Welding in the World

, Volume 50, Issue 11–12, pp 88–97 | Cite as

Strength and Fatigue Resistance of Laser-MIG Hybrid Butt Welds of an Airframe Aluminium Alloy AA6013

  • W. V. Vaidya
  • K. Angamuthu
  • M. Koçak
  • R. Grube
  • J. Hackius
Research Papers


Hybrid welding is, as regards selection of welding parameters, a tolerant process. On the other hand, the weld seam and the heat affected zone may tend to be wider as in an arc process, which may be detrimental to mechanical stability. With CO2 laser beam butt welds as a basis for comparison, properties of butt welds of a peak-aged airframe alloy AA6013-T6/3.2 mm, produced by Nd: YAG-MIG hybrid, are investigated. A filler wire (AA4047; AlSi12) was used for both types of welding. It is found that the hybrid process coarsened the microstructure in the fusion zone partly. Furthermore, although the weld seam and the heat-affected zone were wider, mechanical properties were not at all adversely affected. Changes in hardness and tensile strength were marginal and the fatigue performance was in fact improved for the hybrid welds. These results are presented and discussed. It is concluded that the hybrid welding deserves consideration for fatigue critical applications.

IIW-Thesaurus keywords

Laser welding Photon beam welding Radiation welding MIG welding Arc welding Gas shielded arc welding GMA welding Combined processes Butt joints Aluminium alloys Light metals Aircraft Aerospace Crack initiation Crack propagation Fatigue cracks Cracking Defects Microstructure Hardness Mechanical properties Strength Reference lists 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zink W.: Integral solutions for fuselage shells, in Proceedings of the 19th European Conference on Materials for Aerospace Applications, Dec. 6–8, 2000, Munich (Germany), Advanced Aerospace Materials, M. Peters and W.A. Kaysser, eds., DGLR Report 2001-02, Deutsche Gesellschaft für Luft- und Raumfahrt-Lilienthal-Oberth e. V., Bonn, Germany, 2000, pp. 25–32.Google Scholar
  2. [2]
    Weston J., Yoon J.W., Wallach E.R.: Laser welding of aluminium alloys using different laser sources, web article (html version,, found through Google Scholar; Proceedings of the 6th International Conference on Welding and Melting by Electron & Laser Beams, Toulon, France, 15–19 June, 1998).
  3. [3]
    Tusek J., Suban M.: Hybrid welding with arc and laser beam, Science and Technology of Welding and Joining, 1999, Vol. 4, pp. 308–311.CrossRefGoogle Scholar
  4. [4]
    Dilthey U., Wieschemann A.: Prospects by combining and coupling laser beam and arc welding processes, Welding in the World, 2000, Vol. 44, pp. 37–46.Google Scholar
  5. [5]
    Messler Jr. R.W.: What is next for hybrid welding, Welding Journal, 2004, Vol. 83, March, pp. 30–34.Google Scholar
  6. [6]
    Bagger C., Olsen F.O.: Review of laser hybrid welding, Journal of Laser Applications, 2005, Vol. 17, pp. 2–14.CrossRefGoogle Scholar
  7. [7]
    Bertling L., Harlfinger H.: Innovative Fügeverfahren zur Herstellung von Al-Leichtbaustrukturen in Schienenfahrzeug, in German (Innovative joining techniques for creating light-weight aluminium structures in railway vehicle production), Materialwissenschaft und Werkstofftechnik, 1999, Vol. 30, pp. 290–299.Google Scholar
  8. [8]
    Graf T., Staufer H.: Laser-Hybrid welding drives VW improvements, Welding Journal, 2003, Vol. 82, Jan., pp. 44–48.Google Scholar
  9. [9]
    Neye G., Heider P.: Laser beam welding of modern Al-alloys for aircraft industry, in Proceedings of ECLAT′94, 5th European Conference on Laser Treatment of Materials, Sept. 26–27, 1994, Bremen-Vogelsack, Germany, DVS-Berichte Band 163, Deutsche Verlag für Schweißtechnik DVS-Verlag, Düsseldorf, Germany, 1994, pp. 108–117.Google Scholar
  10. [10]
    Hackius J., Brenner B., Winderlich B., Standfuß J., Beyer E.: Laserhybridschweißen von Aluminiumlegierungen, in German, (Laser hybrid welding of aluminium alloys), LaserOpto, 2001, Vol. 33, pp. 49–55.Google Scholar
  11. [11]
    Walz C., Seefeld T., Sepold G.: Nahtgeometrie und Prozessstabilität beim Laser-MIG-Schweißen, in German (Seam geometry and process stability during laser-MIG welding), LaserOpto, 2001, Vol. 33, pp. 64–67.Google Scholar
  12. [12]
    El Rayes M., Walz C., Sepold G.: The influence of various hybrid welding parameters on bead geometry, Welding Journal, 2004, Vol. 83, May, pp. 147–S–153–S.Google Scholar
  13. [13]
    Heinz B., Skrotzki B.: Characterization of a friction-stir-welded aluminium alloy 6013, Metallurgical and Materials Transactions B, 2002, Vol. 33B, pp. 489–498.CrossRefGoogle Scholar
  14. [14]
    Ueyama T., Hong H., Yazawa I., Hirami M., Kihara T., Nakata K., Ushio M.: Aluminium alloy sheet welding by the laser AC pulsed MIG hybrid process, Welding International, 2004, Vol. 18, pp. 345–350.CrossRefGoogle Scholar
  15. [15]
    Mazur M.: Porosity in aluminium welds, Welding International, 1992, Vol. 6, pp. 929–931.CrossRefGoogle Scholar
  16. [16]
    B. Hu, and G. den Ouden: Synergetic effects of laser hybrid/arc welding, Science and Technology of Welding and Joining, 2005, Vol. 10, pp. 427–431.CrossRefGoogle Scholar
  17. [17]
    Vaidya W.V., Koçak M., Seib E., H. Assler and J. Hackius: Mechanical behavior of laser beam and friction stir welded aluminium alloys for airframes, Welding in the World, 2004, Vol. 48, (Special issue, July), pp. 261–273.Google Scholar
  18. [18]
    Staron P., Vaidya W.V., Koçak M., Homeyer J., Hackius J.: Residual stresses in laser beam welded butt joints of the airframe aluminium alloy AA6056, accepted for publication in the Proceedings of the 7th European Conference on Residual Stresses (ECRS 7), 13–15 Sept. 2006, Berlin, Germany (to be published in Materials Science Forum).Google Scholar

Copyright information

© International Institute of Welding 2006

Authors and Affiliations

  • W. V. Vaidya
    • 1
  • K. Angamuthu
    • 1
  • M. Koçak
    • 1
  • R. Grube
    • 2
  • J. Hackius
    • 3
  1. 1.Institute for Materials ResearchGKSS Research CenterGermany
  2. 2.BIASGermany
  3. 3.AIRBUSGermany

Personalised recommendations