Welding in the World

, Volume 49, Issue 5–6, pp 22–28 | Cite as

A Review on Inclusion-Assisted Microstructure Control in C-Mn and Low-Alloy Steel Welds

  • T. Koseki
Technical Papers


Inclusion-assisted microstructure control has been a key technology to improve the toughness of C-Mn and low-alloy steel welds over the last two to three decades. Microstructure of weld metals and heat-affected zone (HAZ) is refined by different inclusions, some of which work as a nucleation site of acicular ferrite or intragranular ferrite and some of which as pinning particles against the grain growth of austenite. In the present paper, mechanisms proposed for intragranular ferrite formation in weld metals and HAZ are reviewed and the feasibility of each mechanism is examined. Factors affecting the intragranular ferrite formation in weld metals and HAZ are compared to find consistent explanation applicable to the both. As the result, by considering the difference of microstructural characteristics between weld metals and HAZ, rational, self-consistent explanations are given to why lattice matching is preferred when acicular ferrite is formed on inclusions in weld metals and why manganese depletion works only in HAZ for the formation of polygonal intragranular ferrite.

IIW-Thesaurus keywords

Low alloy steels Steels Carbon manganese steels Ferrite Bainite Austenite Heat affected zone Weld zone Weld metal Comparisons Reference lists Grain size Toughness Mechanical properties Microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bhadeshia H.K.D.H., Svensson L.-E.: Mathematical modelling of weld phenomena, ed. H. Cerjak and K. E. Easterling, The Institute of Materials, London, 1993, 109.Google Scholar
  2. [2]
    Abson D.J., Dolby R.E., Hart P.M.: Trends for steels and consumables for welding, TWI, London, 1978, 103.Google Scholar
  3. [3]
    Mori N., Homma H., Wakabayashi M., Ohkita S.: J. Jpn. Weld. Soc., 1981, 786.Google Scholar
  4. [4]
    Watanabe I., Kojima T.: J. Jpn. Weld. Soc., 52, 1983, 223.Google Scholar
  5. [5]
    Grong O., Matlock D.K.: Int’l Met. Rev., 31, 1986, 27.CrossRefGoogle Scholar
  6. [6]
    Farrar R.A., Harrison P.L.: J. Mater. Sci., 22, 1987, 3812.CrossRefGoogle Scholar
  7. [7]
    Mills A.R., Thewlis G., Whiteman J.A.: Mater. Sci. Technol., 3, 1987, 1051.CrossRefGoogle Scholar
  8. [8]
    Thewlis G.: Mater. Sci. and Technol., 10, 1994, 110.CrossRefGoogle Scholar
  9. [9]
    Kanazawa S., Nakajima A., Okamoto K., Kanaya K.: Tetsu-to-Hagane, 61, 1975, 2589.Google Scholar
  10. [10]
    Tomita Y., Saito N., Tsuzuki T., Tokunaga Y., Okamoto K.: ISIJ Int’l, 34, 1994, 829.CrossRefGoogle Scholar
  11. [11]
    Ohno Y., Okamura Y., Matsuda S., Yamamoto K., Mukai T.: Tetsu-to-Hagane, 73, 1987, 1010.Google Scholar
  12. [12]
    Yamamoto K., Matsuda S., Haze T., Chijiiwa R., Mimura H.: Residual and unspecified elements in steel, ASTM-STP 1042, ASTM, Philadelphia, 1989, 266.CrossRefGoogle Scholar
  13. [13]
    Eijk C., Grong O., Hjelen J.: Solid-solid phase transformations II, eds. by M. Koiwa et al., Jpn. Inst. Metals, Sendai, 1999, 1573.Google Scholar
  14. [14]
    Funakoshi T., Tanaka T., Ueda S., Ishikawa M., Koshizuka N., Kobayashi K.: Tetsu-to-Hagane, 63, 1977, 303.Google Scholar
  15. [15]
    Ohkita S., Horii Y.: ISIJ Int., 35, 1995, 1170.CrossRefGoogle Scholar
  16. [16]
    Grong O., Kluken A.O., Hylund H.K., Dons A.L., Hjelen J.: Metall. Mater. Trans. A, 26A, 1995, 525.CrossRefGoogle Scholar
  17. [17]
    Horii Y.: Ph.D Thesis, Osaka University, 1995, 7.Google Scholar
  18. [18]
    Savage M.E., Hawkins D.N., Whiteman J.A.: Proc. Int’l. Conf. on Effect of residual, impurity and microalloying elements on weldability and weld properties, TWI, London, 1983, Paper 15.Google Scholar
  19. [19]
    Horii Y., Ichikawa K., Ohkita S., Funaki S., Yurioka N.: Q. J. Jpn. Weld. Soc., 13, 1995, 500.CrossRefGoogle Scholar
  20. [20]
    Nishimori M., Hayashi T., Kawabata H., Amano K.: CAMP-ISIJ, 10, 1997, 592.Google Scholar
  21. [21]
    Ichinose T., Okaguchi H., Komizo Y.: CAMP-ISIJ, 11, 1998, 531.Google Scholar
  22. [22]
    Ricks R.A., Howell P.R., Barritte G.S.: J. Mater. Sci., 17, 1982, 732.CrossRefGoogle Scholar
  23. [23]
    Miyamoto G., Furuhara T., Maki T.: CAMP-ISIJ, 14, 2001, 1172.Google Scholar
  24. [24]
    Shigesato G., Sugiyama M., Aihara S., Uemori R., Tomita Y.: Tetsu-to-Hagane, 87, 2001, 93.Google Scholar
  25. [25]
    Byun J.-S., Shim J.-H., Cho Y.W., Lee D.N.: Acta Mater., 51, 2003, 1593.CrossRefGoogle Scholar
  26. [26]
    Dowling J.M., Corbett J.M., Kerr H.W.: Metall. Trans. A, 17A, 1986, 1611.Google Scholar
  27. [27]
    Thewlis G., Whiteman J.A., Senogles D.J.: Mater. Sci. Technol., 13, 1997, 257.CrossRefGoogle Scholar
  28. [28]
    Lee T.-K., Kim H.J., Kang B.Y., Hwang S.K.: ISIJ Int’l, 40, 2000, 1260.CrossRefGoogle Scholar
  29. [29]
    Fletcher N.H.: J. Chem. Phys., 29, 1958, 572.CrossRefGoogle Scholar
  30. [30]
    Harrison] P.L.: PhD Thesis, U. Southampton, UK, 1982.Google Scholar
  31. [31]
    Yang J.R., Bhadeshia H.K.D.H.: Mater. Sci. Technol., 5, 1989, 93.Google Scholar
  32. [32]
    Gregg J.M., Bhadeshia H.K.D.H.: Acta metall. mater., 42, 1994, 3321.CrossRefGoogle Scholar
  33. [33]
    Farrar R.A., Zhang Z.: Mater. Sci. Technol., 11, 1995, 759.CrossRefGoogle Scholar
  34. [34]
    Koseki T., Ohkita S., Yurioka N.: Sci. Technol. Welding and Joining, 2, 1997, 65.CrossRefGoogle Scholar
  35. [35]
    Murr L.E.: Interfacial phenomena in metals and alloys, Addison-Welsley Publ., MA, U.S.A., 1975, 134.Google Scholar

Copyright information

© International Institute of Welding 2005

Authors and Affiliations

  • T. Koseki
    • 1
  1. 1.Department of Materials EngineeringThe University of TokyoJapan

Personalised recommendations