Welding in the World

, Volume 46, Issue 11–12, pp 26–29 | Cite as

Thickness Design of Axially Compressed Unstiffened Cylindrical Shells with Circumferential Welds

  • J. Farkas
Technical Papers


The basic formulae for the calculation of the negative thermal impulse due to the shrinkage of a circumferential weld are given as a function of welding parameters. A differential equation for the radial shell deformation is derived using the bending theory of cylindrical shells. The solution of this equation gives an approximate formula for the maximum radial deformation. Comparing this formula with the limiting deformation given by ECCS allows calculating the required shell thickness. Another thickness can be obtained using ECCS buckling formulae. Using an interpolation, a thickness can be calculated, which fulfils both constraints. Numerical examples illustrate the thickness design.

IIW-Thesaurus keywords

Distortion Strain Local effects Stress Compression Buckling Cylinders Thickness Circumferential welds Welded joints Computation Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rotter J.M., Teng Jin-Guang, Elastic stability of cylindrical shells with weld depressions. J. Struct. Eng. ASCE 115 (1989), No. ST5, 1244–1263.Google Scholar
  2. 2.
    Scaramangas A.A., Residual stress and deformation in circumferential pipe-joint welds. Technical Report No. CUED/D-Struct/TR.87. University of Cambridge, Department of Engineering, 1980.Google Scholar
  3. 3.
    Häfner L, Einfluss einer Rundschweissnaht auf die Stabilität und Traglast des axialbelasteten Kreiszylinders. Doctor-Dissertation. Institut für Baustatik der Universität Stuttgart, 1982.Google Scholar
  4. 4.
    Kuzminov S.A., Welding deformations of ship structures (in Russian). Leningrad, Sudostroenie, 1974.Google Scholar
  5. 5.
    Berry P.A., Rotter J.M., Bridge R.Q. Compression tests on cylinders with circumferential weld depressions. J. Engineering Mechanics ASCE 126 (2000): No. 4, 405–413.CrossRefGoogle Scholar
  6. 6.
    Pircher M., Berry P.A., Ding X., Bridge R.Q, The shape of circumferential weld-induced imperfections in thin-walled steel silos and tanks. Thin-Walled Structures 39 (2001): 999–1014.CrossRefGoogle Scholar
  7. 7.
    Stability of Metal Structures. A world view. Second Ed. Beedle, L.S. editor. 1991. National Science Foundation USA. Chapter 10a. Unstiffened cylinders subject to meridional compression. Design rules of European Convention of Constructional Steelwork (ECCS) No. 29–88.Google Scholar
  8. 8.
    Farkas J., Jármai K, Analysis and optimum design of metal structures. Rotterdam-Brookfield, Balkema. 1997.Google Scholar
  9. 9.
    Farkas J., Jármai K, Analysis of some methods for reducing residual beam curvatures due to weld shrinkage. Welding in the World 41 (1998), 385–398.Google Scholar

Copyright information

© International Institute of Welding 2002

Authors and Affiliations

  • J. Farkas
    • 1
  1. 1.University of MiskolcHungary

Personalised recommendations