Skip to main content
Log in

Global Analysis of Rice Tungro Spherical Virus Coat Proteins Reveals New Roles in Evolutionary Consequences

  • Short Communication
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rice tungro disease is caused by a combination of two viruses: Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus (RTBV). RTSV has a capsid comprising three coat proteins (CP) species. Three CP genes of RTSV-AP isolate were sequenced and compared with 9 other isolates reported worldwide for their phylogenetic survey of recombination events which revealed that in general Indian isolates are forming one separate cluster while those of Philippines and Malaysia forming a different cluster. A significant proportion of recombination sites were found in the CP1 gene, followed by CP2 and CP3 suggesting that it is a major phenomenon in the evolution of various isolates of RTSV. Some interesting domains and motifs such as; 3,4-dihydroxy-2-butanone 4-phosphate synthase in CP1, Type 1 glutamine amidotransferase domain and RNA binding motifs in CP2, domains of receptor proteins in CP3, and glycosylation motif in CP2 and CP3 were also obtained in RTSV coat protein. In addition, simple modular architecture research tool (SMART) analysis of coat proteins of RTSV predicted the coat protein domain of calicivirus suggesting evolutionary linkages between plant and animal viruses. This study provides an opportunity to establish the molecular evolution and sequence-function relationship of RTSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

CDD:

conserved domain database

CP:

coat protein

SMART:

simple modular architecture research tool

RTBV:

Rice tungro bacilliform virus

RTSV:

Rice tungro spherical virus

RTD:

Rice tungro disease

RDP:

Recombination detection programme

References

  1. Muralidharan K, Krishnaveni D, Rajarajeshwari N V L & Prasad A S R, Curr Sci, 65 (2003) 1143.

    Google Scholar 

  2. Hull R, Annu Rev Phytopathol, 34 (1996) 275.

    Article  PubMed  CAS  Google Scholar 

  3. Letunic I, Doerks T & Bork P, NucleicAcids Res, 37 (2009) D229.

    Article  CAS  Google Scholar 

  4. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche B A, de Castro E, Lachaize C, Langendijk-Genevaux P S & Sigrist C J, Nucleic Acids Res, 36 (2008) D245.

    Article  PubMed  CAS  Google Scholar 

  5. Marchler-Bauer A, Anderson J B, Chitsaz F, Derbyshire M K, DeWeese-Scott C, Fong J H, Geer L Y, Geer R C, Gonzales N R, Gwadz M, He S, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C J, Liebert C A, Liu C, Lu F, Lu S, Marchler G H, Mullokandov M, Song J S, Tasneem A, Thanki N, Yamashita R A, Zhang D, Zhang N & Bryant S H, Nucleic Acids Res, 37 (2009) (D) 205.

    Article  CAS  Google Scholar 

  6. Roossinck M J, Annu Rev Phytopathol, 35 (1997) 191.

    Article  PubMed  CAS  Google Scholar 

  7. Hall T A, Nucleic Acids Symp Ser, 41 (1999) 95.

    CAS  Google Scholar 

  8. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F & Higgins D G, Nucleic Acids Res, 24 (1997) 4876.

    Article  Google Scholar 

  9. Martin D P, Posada D, Crandall K A & Williamson C, AIDS Res Hum Retroviruses, 21 (2005) 98.

    Article  PubMed  CAS  Google Scholar 

  10. Mangrauthia S K, Parameswari B, Jain R K & Praveen S, Biochem Genet, 46 (2008) 835.

    Article  PubMed  CAS  Google Scholar 

  11. Grohmann G, Glass R I, Gold J, James M, Edwards P, Borg T, Stine S E, Goldsmith C & Monroe S S, J Clin Microbiol, 29 (1991) 544.

    PubMed  CAS  Google Scholar 

  12. Taheri P & Tarighi S, J Plant Physiol, 167 (2010) 201.

    Article  PubMed  CAS  Google Scholar 

  13. Mangrauthia S K, Singh P & Praveen S, Mot Biotechnol, 44 (2010) 22.

    Article  CAS  Google Scholar 

  14. Druka A, Burns T, Zhang S & Hull R, J Gen Virol, 77 (1996) 1975.

    Article  PubMed  CAS  Google Scholar 

  15. Vigerust D J & Shepherd V L, Trends Microbiol, 15 (2007) 211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satendra K. Mangrauthia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangrauthia, S.K., Malathi, P., Balachandran, S.M. et al. Global Analysis of Rice Tungro Spherical Virus Coat Proteins Reveals New Roles in Evolutionary Consequences. J. Plant Biochem. Biotechnol. 19, 263–266 (2010). https://doi.org/10.1007/BF03263353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263353

Key words

Navigation