In Planta Transformation Technique for Grapevines (Vitis vinifera L) using Dormant Buds

  • Keiko Fujita
  • Tsubasa Matsuoka
  • Shunji Suzuki
  • Tsutomu Takayanagi


Plant regeneration using the genetic transformation method often induces somatic mutation as well as epigenetic alteration. In addition, methods commonly used for grapevine (Vitis vinifera L) transformations are time-consuming due to the long reproductive cycle of the grapevine. Therefore, an improved method is needed for more efficient grapevine transformation. Five transformants (three for Chardonnay and two for Cabernet Sauvignon) were obtained by inoculation of dormant buds on cuttings with Agrobacterium tumefaciens harbouring a pBI121 binary vector. All of the transformants expressed β-glucuronidase (GUS) transcripts constitutively in all expanding leaves from the Agrobacterium-inoculated buds. Histochemical analysis showed that the transformants expressed GUS in the vascular bundle system. We demonstrate an alternative in planta transformation method for grapevines using dormant buds. Genetically modified grapevines could be obtained simply and rapidly with this method. In addition, this method avoids the tissue culture step that can cause somatic mutations, suggesting that the biological and physiological functions of transgene products could be accurately estimated in transgenic grapevines created by this new method.

Key words

In planta transformation grapevine dormant bud Agrobacterium tumetaciens 



polymerase chain reaction




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alleweldt G & Possingham JV, Theor Appl Genet, 75 (1998) 669.Google Scholar
  2. 2.
    International Organisation of Vine and Wine, Organization of vine and wine: situation and statistics of the world vitiviniculture sector (2006) Scholar
  3. 3.
    The French-Italian Public Consortium for Grapevine Genome Characterization, The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, Nature, 449 (2007) 463.CrossRefGoogle Scholar
  4. 4.
    Travis J, Science, 320 (2008) 475.PubMedCrossRefGoogle Scholar
  5. 5.
    Bornhoff BA, Harst M, Zyprian E & Töpfer R, Plant Cell Rep, 24 (2005) 433.PubMedCrossRefGoogle Scholar
  6. 6.
    Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J & Reisch BI, Transgenic Res, 15 (2006) 69.PubMedCrossRefGoogle Scholar
  7. 7.
    Maghuly F, Leopold S, da Câmara Machado A, Borroto Fernandez E, Ali Khan M, Gambino G, Gribaudo I, Schartl A & Laimer M, Plant Cell Rep, 25 (2006) 546.PubMedCrossRefGoogle Scholar
  8. 8.
    Mezzetti B, Pandolfini T, Navacchi O & Landi L, BMC Biotechnol, 2 (2002) 18.PubMedCrossRefGoogle Scholar
  9. 9.
    Tesniere C, Torregrosa L, Pradal M, Souquet J-M, Gilles C, Santos KD, Chatelet P & Gunata Z, J Exp Bot, 57 (2006) 91.PubMedCrossRefGoogle Scholar
  10. 10.
    Costantini E, Landi L, Silvestroni O, Pandolfini T, Spena A & Mezzetti B, Plant Physiol, 143 (2007) 1689.PubMedCrossRefGoogle Scholar
  11. 11.
    Vigne E, Komar V & Fuchs M, Transgenic Res, 13 (2004) 165.PubMedCrossRefGoogle Scholar
  12. 12.
    Perl A, Lotan O, Abu-Abied M & Holland D, Nat Biotechnol, 14 (1996) 624.PubMedCrossRefGoogle Scholar
  13. 13.
    Kikkert JR, Herbert-Soule D, Wallace PG, Striem MJ & Reisch BI, Plant Cell Rep, 15 (1996) 311.CrossRefGoogle Scholar
  14. 14.
    locco P, Franks T & Thomas MR, Transgenic Res, 10 (2001) 105.CrossRefGoogle Scholar
  15. 15.
    Scorza R, Cordts JM, Ramming DW & Emershad RL, Plant Cell Rep, 14 (1995) 589.CrossRefGoogle Scholar
  16. 16.
    Franks T, Gang He D & Thomas MR, Mol Breeding, 4 (1998) 321.CrossRefGoogle Scholar
  17. 17.
    Spielmann A, Krastanova S, Douet-Orhant VV & Gugerli P, Plant Sci, 156 (2000) 235.PubMedCrossRefGoogle Scholar
  18. 18.
    Li ZT, Dhekney SA, Dutt M & Gray DJ, Plant Cell Tiss Organ Cult, 93 (2008) 311.CrossRefGoogle Scholar
  19. 19.
    López-Pérez A-J, Velasco L, Pazos-Navarro M & Dabauza M, Plant Cell Tiss Organ Cult, 94 (2008) 189.CrossRefGoogle Scholar
  20. 20.
    Birch RG, Annu Rev Plant Physiol Plant Mol Biol, 48 (1997) 297.PubMedCrossRefGoogle Scholar
  21. 21.
    Phillips RL, Kaeppler SM & Olhoft P, Proc Natl Acad Sci, USA, 91 (1994) 5222.PubMedCrossRefGoogle Scholar
  22. 22.
    Bent AF, Plant Physiol, 124 (2000) 1540.PubMedCrossRefGoogle Scholar
  23. 23.
    Trieu AT, Burleigh SH, Kardailsky IV, Malsonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou T-J, Katagi H, Dewbre GR, Weigel D & Harrison MJ, Plant J, 22 (2000) 531.PubMedCrossRefGoogle Scholar
  24. 24.
    Kojima M, Suparthana P, Teixeira da Silva JA & Nogawa M, In Floriculture, ornamental and plant biotechnology, Advances and topical issues I. (JA Teixeira da Silva, Editor), Global Science Books, UK (2006) pp 42–48.Google Scholar
  25. 25.
    Kojima M, Arai Y, Iwase N, Shirotori K, Shioiri H & Nozue M, Biosci Biotechnol Biochem, 64 (2000) 845.PubMedCrossRefGoogle Scholar
  26. 26.
    Bolton GW, Nester EW & Gordon MP, Science, 232 (1986) 983.PubMedCrossRefGoogle Scholar
  27. 27.
    Takatsu Y, Hayashi M & Sakuma F, Plant Biotechnol, 17 (2000) 241.CrossRefGoogle Scholar
  28. 28.
    Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L & Rocha-Sosa M, Mol Gen Genet, 220 (1990) 245.PubMedCrossRefGoogle Scholar
  29. 29.
    Kojima M, Shioiri H, Nogawa M, Nozue M, Matsumoto D, Wada A, Saiki Y & Kiguchi K, J Biosci Bioeng, 96 (2004) 136.Google Scholar
  30. 30.
    Chandler VL & Vaucheret H, Plant Physiol, 125 (2001) 145.PubMedCrossRefGoogle Scholar
  31. 31.
    Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC & Vernhettes S, Plant J, 16 (1998) 651.PubMedCrossRefGoogle Scholar
  32. 32.
    Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng J-C, Nam KH, Li J & Chory J, Development, 131 (2004) 5341.PubMedCrossRefGoogle Scholar
  33. 33.
    Peretz Y, Mozes-koch R, Akad F, Tanne E, Czosnek H & Sela I, Plant Physiol, 145 (2007) 1251.PubMedCrossRefGoogle Scholar
  34. 34.
    Hoshino Y, Zhu Y-M, Nakano M, Takahashi E & Mii M, Plant Biotechnol, 15 (1998) 29.Google Scholar
  35. 35.
    Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carmi F & Schiavo FL, Plant Cell Rep, 27 (2008) 845.PubMedCrossRefGoogle Scholar
  36. 36.
    Suparthana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M & Kojima M, J Biosci Bioeng, 102 (2006) 162.CrossRefGoogle Scholar
  37. 37.
    Hocquigny S, Pelsy F, Dumas V, Kindt S, Heloir M-C & Merdinoglu D, Genome, 47 (2004) 579.PubMedCrossRefGoogle Scholar
  38. 38.
    This P, Lacombe T & Thomas MR, Trends Genet, 22 (2006) 511.PubMedCrossRefGoogle Scholar
  39. 39.
    Vidal JR, Kikkert JR, Wallace PG & Reisch BI, Plant Cell Rep, 22 (2003) 252.PubMedCrossRefGoogle Scholar
  40. 40.
    Colby SM & Meredith CP, Plant Cell Rep, 9 (1990) 237.CrossRefGoogle Scholar
  41. 41.
    Kikkert JR, Thomas MR & Reisch BI, In Molecular biology and biotechnology of the grapevine. (KA Roubelakis-Angelakis, Editor), Kluwer Academic Publishers, Dordrecht (2001) pp 393–410.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Keiko Fujita
    • 1
  • Tsubasa Matsuoka
    • 1
  • Shunji Suzuki
    • 1
  • Tsutomu Takayanagi
    • 1
  1. 1.Laboratory of Fruit Genetic Engineering, The Institute of Enology and ViticultureUniversity of YamanashiKofu, YamanashiJapan

Personalised recommendations