Linkage Disequilibrium in Salt Tolerant Genotypes of Rice (Oryza sativa L)

  • C. N. Neeraja
  • B. Mishra
  • K. Srinivasa Rao
  • R. K. Singh
  • G. Padmavati
  • V. V. Shenoy
Short Communication


Genome wide linkage disequilibrium (LD) was investigated in a set of 32 genotypes representing salt tolerant improved varieties and landraces and six salt sensitive genotypes of rice with 64 microsatellite markers to identify the genomic regions that are associated with salt tolerance in rice. Out of 64 markers analyzed, 36% SSR pairs exhibited significant LD at 0.05. A few regions were identified as targets of selection in 10 chromosomes with high r 2 values. The model-based groups from Bayesian clustering analysis are largely consistent with known pedigrees of the lines. The increased percentage of association of SSR loci in the improved varieties indicated the role of selection in linkage disequilibrium especially for salt tolerance. LD was extended as far as 100 cM in the present study. Most of the markers (43.8%) with significant LD values were observed in the genomic regions of reported QTL for salt tolerance in rice.

Key words

linkage disequilibrium microsatellites salt tolerance rice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flowers TJ, J Exp Bot, 55 (2004) 307.PubMedCrossRefGoogle Scholar
  2. 2.
    Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP & Querta CO, Field Crops Res, 76 (2002) 91.CrossRefGoogle Scholar
  3. 3.
    Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamaya T, Camella T & Sato T, Field Crops Res, 89 (2004) 85.CrossRefGoogle Scholar
  4. 4.
    Garris A, McCouch SR & Kresovich S, Genetics, 165 (2003) 759.PubMedGoogle Scholar
  5. 5.
    Flint-Garcia SA, Thornsberry JM & Buckler ES, Ann Rev Plant Biol, 54 (2003) 357.CrossRefGoogle Scholar
  6. 6.
    Gao L, Mol Ecol, 13 (2004) 1009.PubMedCrossRefGoogle Scholar
  7. 7.
    Semon M, Nielsen R, Jones MP & McCouch SR, Genetics, 169 (2005)1639.PubMedCrossRefGoogle Scholar
  8. 8.
    Kim Y & Nielsen R, Genetics, 167 (2004)1513.PubMedCrossRefGoogle Scholar
  9. 9.
    Dellaporta SL, Wood H & Hicks JB, PI Mol Biol Rep, 1 (1983) 19.CrossRefGoogle Scholar
  10. 10.
    McCouch SR, Temnykh S, Lukashova A, Coburn J, Declerck G, Cartinhour S, Harrington, Thomson M, Septiningsih E, Semon M, Moncada P & Li J, In Rice genetics IV, (GS Khush, DS Brar, B Hardy, Editors) IRRI and Science Publishers Inc (2001) p 117.Google Scholar
  11. 11.
    Falush D, Stephens M & Pritchard JK, Genetics, 164 (2003) 1567.PubMedGoogle Scholar
  12. 12.
    Remington DL, Thornsberry JIM, Matsuola Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM & Buckler ES, Proc Nat Acad Sci, USA, 98 (2001) 11479.CrossRefGoogle Scholar
  13. 13.
    Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS & McMullen MD, Plant Cell, 17 (2005) 2859.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • C. N. Neeraja
    • 1
  • B. Mishra
    • 1
  • K. Srinivasa Rao
    • 1
  • R. K. Singh
    • 2
  • G. Padmavati
    • 1
  • V. V. Shenoy
    • 3
  1. 1.Directorate of Rice ResearchHyderabadIndia
  2. 2.Central Soil Salinity Research InstituteKarnalIndia
  3. 3.Monsanto Genetics India Pvt LtdHyderabadIndia

Personalised recommendations