Skip to main content
Log in

A Cointegrate Ti Plasmid Vector for Agrobacterium tumefaciens - mediated Transformation of indica Rice cv Pusa Basmati 1

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An intermediate vector pSSJ1 was constructed by cloning a hph gene and a gus gene with catalase intron in pGV1500. pSSJ1 was cointegrated into a disarmed receptor Ti plasmid pGV2260 harboured in Agrobacterium tumefaciens strain C58C1RifR. The resulting A. tumefaciens strain C58C1RifR (pGV2260::pSSJ1) stably transformed Oryza sativa L. cv Pusa Basmati 1 scutellum-derived calli at 26% frequency. Introduction of the plasmid pSSJ3 (3′virB, virG and virC of pTiB0542) into A. tumefaciens C58C1RifR (pGV2260::pSSJ1) resulted in the elevation of acetosyringone-induced T -strand accumulation. Rice transformation efficiency of the cointegrate plasmid pGV2260::pSSJ1 increased from 26% to 33% in the presence of pSSJ3 and from 26% to 35% in the presence of pToK47 (complete virB, virG and virC). T-DNA integration in To plants was confirmed by Southern hybridization analysis. Inheritance analysis of the T0 plants with single-copy T-DNA insertions revealed segregation of hygromycin resistance in 3:1 ratio. The feasibility of rice transformation with a cointegrate Ti plasmid vector is clearly established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AS:

acetosyringone

CaMV:

cauliflower mosaic virus

CIM:

callus-induction medium

2,4-0:

2,4-dichlorophenoxyacetic acid

GUS:

β-glucuronidase

Hyg:

hygromycin

LB:

left T-DNA border

MS:

Murashige and Skoog

NAA:

α-naphthaleneacetic acid

RB:

right T-DNA border

RIM:

root-induction medium

SIM:

shoot-induction medium

References

  1. Tyagi AK & Mohanty A, Plant Sci, 158 (2000) 1.

    Article  PubMed  CAS  Google Scholar 

  2. Hiei Y, Ohta S, Komari T & Kumashiro T, Plant J, 6 (1994) 271.

    Article  PubMed  CAS  Google Scholar 

  3. Aldemita RR & Hodges TK, Planta, 199 (1996) 612.

    Article  CAS  Google Scholar 

  4. Park SH, Pinson SRM & Smith RH, Plant Mol Bioi, 32 (1996) 1135.

    Article  CAS  Google Scholar 

  5. Komari T, Hiei Y, Saito Y, Murai N & Kumashiro T, Plant J, 10 (1996) 165.

    Article  PubMed  CAS  Google Scholar 

  6. Wang MB, Upadhyaya NM, Brettel RIS & Waterhouse PM, J Genet Breed, 51 (1997) 325.

    CAS  Google Scholar 

  7. Zhang J, Xu R-J, Elliot MC & Chen D-F, Mol Biotechnol, 8 (1997) 223.

    Article  PubMed  CAS  Google Scholar 

  8. Cheng X, Sardana R, Kaplan H & Altosaar , Proc Natl Acad Sci, USA, 95 (1998) 2767.

    Article  Google Scholar 

  9. Dong J, Kharb P, Teng W & Hall TC, Mol Breed, 7 (2001) 187.

    Article  CAS  Google Scholar 

  10. Kant T, Kothari SL, Kononowicz-Hodges H & Hodges TK, J Plant Biochem Biotechnol, 10 (2001) 121.

    Google Scholar 

  11. Rashid H, Yokoi S, Toriyama K & Hinata K, Plant Cell Rep, 15 (1996) 727.

    Article  CAS  Google Scholar 

  12. Mohanty A, Sarma NP & Tyagi AK, Plant Sci, 147 (1999) 127.

    Article  CAS  Google Scholar 

  13. Khanna HK & Raina SK, Aust J Plant Physiol, 26 (1999) 311.

    Article  CAS  Google Scholar 

  14. Kumria R, Waie B & Rajam MV, Plant Cell Tiss Org Cult, 67 (2001) 63.

    Article  CAS  Google Scholar 

  15. Dong J, Teng W, Bucholz WG & Hall TC, Mol Breed, 2 (1996) 267.

    Article  CAS  Google Scholar 

  16. Vijayachandra K, Palanichelvam K & Veluthambi K, Plant Mol Bioi, 29 (1995) 125.

    Article  CAS  Google Scholar 

  17. Balconi C, Perugini I, Castelleti S, Reali A, Russo S, Chan M-T & Lupotto E, J Genet Breed, 52 (1998) 313.

    Google Scholar 

  18. Huang JQ, Wei ZM, An HL & Zhu YX, Cell Res, 11 (2001) 149.

    Article  PubMed  CAS  Google Scholar 

  19. Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J, EMBO J, 2 (1983) 2143.

    PubMed  CAS  Google Scholar 

  20. Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, & Leemans J, Nucl Acids Res, 12 (1985) 4777.

    Article  Google Scholar 

  21. Ramanathan V & Veluthambi K, J Biosci, 21 (1996) 45.

    Article  CAS  Google Scholar 

  22. de Framond AJ, Back EW, Chilton WS, Kayes L & Chilton MD, Mol Gen Genet, 202 (1986) 125.

    Article  Google Scholar 

  23. Chilton M-D, Currier TC, Farrand SK, Bendich AJ, Gordon MP & Nester EW, Proc Natl Acad Sci, USA, 71 (1974) 3672.

    Article  PubMed  CAS  Google Scholar 

  24. Veluthambi K, Jayaswal RK & Gelvin SB, Proc Natl Acad Sci, USA, 84 (1987) 1881.

    Article  PubMed  CAS  Google Scholar 

  25. Veluthambi K, Ream W & Gelvin SB, J Bacteriol, 170 (1988) 1523.

    PubMed  CAS  Google Scholar 

  26. Murashige T & Skoog F, Physiol Plant, 15 (1962) 473.

    Article  CAS  Google Scholar 

  27. Rogers SO & Bendich AJ, In Plant molecular biology manual (SB Gelvin, RA Shilperoort, DPS Verma, Editors), Kluwer Academic Publishers, Dordrecht (1988) ppA6/1–A6/11.

    Google Scholar 

  28. Zheng Z, Hayashimoto A, Li Z & Murai N, Plant Physiol, 97 (1991) 832.

    Article  PubMed  CAS  Google Scholar 

  29. Ohta S, Mita S, Hattori T & Nakamura K, Plant Cell Physiol, 31 (1990) 805.

    CAS  Google Scholar 

  30. Deblaere R, Reynaerts A, Hofte H, Hernalsteens J-P, Leemans J & Van Montagu M, Methods Enzymol, 153 (1987) 277.

    Article  CAS  Google Scholar 

  31. Jin S, Komari T, Gordon MP & Nester EW, J Bacteriol, 169 (1987) 4417.

    PubMed  CAS  Google Scholar 

  32. Knauf V & Nester EW, Plasmid, 8 (1982) 45.

    Article  PubMed  CAS  Google Scholar 

  33. De Neve M, De Buck S, Jacobs A, Van Montagu M & Depicker A, Plant J, 11 (1997) 15.

    Article  PubMed  Google Scholar 

  34. Daley M, Knauf VC, Summerfelt KR & Turner JC, Plant Cell Rep, 17 (1998) 489.

    Article  CAS  Google Scholar 

  35. Chen C-Y, Wang L & Winans SC, Mol Gen Genet, 230 (1991) 302.

    Article  PubMed  CAS  Google Scholar 

  36. Liu C-N, Li X-Q & Gelvin SB, Plant Mol Bioi, 20 (1992) 1071.

    Article  CAS  Google Scholar 

  37. Liu C-N, Steck TR, Habeck LL, Meyer JA & Gelvin SB, Mol Plant-Microbe Interact, 6 (1993) 144.

    Article  CAS  Google Scholar 

  38. Krishnamohan A, Balaji V & Veluthambi K, J Bacteriol, 183 (2001) 4079.

    Article  PubMed  CAS  Google Scholar 

  39. Ye X, AI-Babili S, Kloti A, Zhang J, Lucca P, Beyer P & Potrykus I, Science, 287 (2000) 303.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Veluthambi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, S.S., Veluthambi, K. A Cointegrate Ti Plasmid Vector for Agrobacterium tumefaciens - mediated Transformation of indica Rice cv Pusa Basmati 1. J. Plant Biochem. Biotechnol. 12, 1–9 (2003). https://doi.org/10.1007/BF03263152

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263152

Keywords

Navigation