Skip to main content
Log in

Mitochondrial DNA-RFLP Analysis Distinguishes New CMS Sources in Pearl Millet (Pennisetum glaucum (L.) R. Br.)

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Restriction fragment length polymorphism (RFLP) of mitochondrial (mt) DNA provides a rapid and effective method to assess heterogeneity among male sterile cytoplasms. Six isonuclear A-lines (81 A1, with Tift 23A1, cytoplasm, ICMA 88001 (= 81Av) with Violaceum cytoplasm, 81A (=81A4) with monodli = violaceum cytoplasm, Pb 310A2 and Pb 311A2 with A2 cytoplasm from L 66A, and Pb 406A3 with A3 cytoplasm from L 67A), nine cytoplasmic male-sterility sources from Large-Seeded Genepool (LSGP 6, LSGP 14, LSGP 17, LSGP 22, LSGP 28, LSGP 36, LSGP 43, LSGP 55 and LSGP 66) and two each from Early Genepool (EGP 33 and EGP 15) and Population Varieties (PV 1 and PV 2) were characterized for variation in their mitochondrial genomes following Southern blot hybridizations using homologous (pearl millet 13.6 kb, 10.9 kb, 9.7 kb and 4.7 kb clones) and heterologous (maize atp6 and coxl clones) mitochondrial DNA (mtDNA) probes. Following cluster analysis based on similarity indices for the RFLP banding patterns observed, we identified seven cytoplasmic groups within LSGP. Two (LSGP 43 and LSGP 66) of these were quite distinct from each other as well as from other cytoplasms. This clearly indicates that besides serving as a source of diversity for agronomic and adaptation traits, broad-based gene pools can also provide diverse sources of cytoplasmic male sterility. These new CMS sources were also compared with standard CMS systems and cytoplasm-specific restriction fragments were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ulistrop AJ, Ann Rev Phytopathology, 10 (1972) 37.

    Article  Google Scholar 

  2. Pring OR & Lonsdale DM, Int Rev Cytol, 97 (1985) 1.

    Article  CAS  Google Scholar 

  3. Ourbin RO & Uchytll TF, Biochem Genet, 15 (1977) 1143.

    Article  Google Scholar 

  4. Burton GW & Athwal DS, Crop Sci, 7 (1967) 209.

    Article  Google Scholar 

  5. Appadurai R, Raveendran TS & Nagarajan C, Indian J Agri Sci, 52 (1982) 832.

    Google Scholar 

  6. Aken’Ova ME, Euphytica, 34 (1985) 34.

    Google Scholar 

  7. Marchais L & Pernes J, Z. Pflanzenzucht, 95 (1985) 103.

    Google Scholar 

  8. Hanna WW, Crop Sci, 29 (1989) 1457.

    Article  Google Scholar 

  9. Sujata V, Sivaramakrishnan S, Rai KN & Seetha K, Genome, 37 (1994) 482.

    Article  PubMed  CAS  Google Scholar 

  10. Rai KN & Hash CT, Crop Sci, 30 (1990) 889.

    Article  Google Scholar 

  11. Virk DS & Brar JS, Theor Appl Genet, 87 (1993) 106.

    Article  Google Scholar 

  12. Smith RL, Chowdhury MKU, Theor Appl Genet, 81 (1991) 793.

    Article  CAS  Google Scholar 

  13. Smith RL, Chowdhury MKU & Pring DR, Plant Mol Biol, 9 (1987) 277.

    Article  CAS  Google Scholar 

  14. Dewey RE, Levings CS III & Timothy DH, Plant Physiol, 79 (1980) 914.

    Article  Google Scholar 

  15. Isaac PG, Jones VP & Leaver CJ, EMBOJ, 4 (1985) 1617.

    CAS  Google Scholar 

  16. Feinberg AP & Vogelstein B, Anal Biochem, 137 (1983) 266.

    Google Scholar 

  17. Nei M, Molecular evolutionary genetics. Columbia University Press, New York, USA (1987).

    Google Scholar 

  18. Rai KN, Plant Breeding, 114 (1995) 445.

    Article  Google Scholar 

  19. Rai KN & Rao AS, International Crop Science Congress, New Delhi, India (1996) Abstract P5-0018.

    Google Scholar 

  20. Rajeshwari R, Sivaramakrishnan S, Smith RL & Subramanyam NC, Theor Appl Genet, 88 (1994) 441.

    Article  CAS  Google Scholar 

  21. Rai KN, Virk DS & Harinarayana G, Cereals Program Annual Report. Cereals Program, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India (1991) P 79.

    Google Scholar 

  22. Chhabra AK, Ph.D Thesis, CCS Haryana Agricultural University, Hisar (1995).

    Google Scholar 

  23. Sivaramakrishnan S, Rajeshwari R, Subramanyam NC, Smith RL, Sujata V & Rai KN, Cereals Program Annual Report. Cereals Program, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India (1993) p 83.

    Google Scholar 

  24. Smith RL & Chowdhury MKU, Crop Sci, 29 (1989) 809.

    Article  Google Scholar 

  25. Virk DS & Mangat BK, Millet News Lett, 6 (1987) 6.

    Google Scholar 

  26. Virk DS & Mangat BK, Millet News Lett, 7 (1988) 3.

    Google Scholar 

  27. Virk DS & Mangat BK, Millets News Lett, 8 (1989) 3.

    Google Scholar 

  28. Virk DS, Mangat BK & Gill KS, J Res Punjab Agric Uni, 27 (1990) 359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhabra, A.K., Rai, K.N., Khairwal, I.S. et al. Mitochondrial DNA-RFLP Analysis Distinguishes New CMS Sources in Pearl Millet (Pennisetum glaucum (L.) R. Br.). J. Plant Biochem. Biotechnol. 7, 85–92 (1998). https://doi.org/10.1007/BF03263041

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263041

Key words

Navigation