Advertisement

Energy-dependence of the Assimilatory Nitrate Uptake in Azorhizobium caulinodans Strain IRBG 46

  • K. Siva Raju
  • N. D. Sharma
  • M. L. Lodha
Article

Abstract

Nitrate assimilation by suspensions of Azorhizobium caulinodans strain IRBG 46, as determined by disappearance of nitrate ions from the external medium, displayed the requirement of readily utilizable carbon source. Nitrate uptake was blocked by the uncouplers of oxidative phosphorylation such as 2,4-dinitrophenol, carbonyl cyanide m-chlorophenyl hydrazone and by an inhibitor of ATPase, N, N — dicyclohexyl carbodiimide. The inhibition of nitrate assimilation in the absence of appropriate carbon source was not overcome by the non-physiological terminal electron donor ascorbate plus N-methyl phenazinium methyl sulphate, a substrate combination that allows electron transfer to O2 without the synthesis of ATP. These data suggest that transport of nitrate into the cell is directly dependent on ATP.

Key words

Azorhizobium caulinodans nitrate uptake nitrate reductase energy dependence 

Abbreviations

CCCP

Carbonyl cyanide m-chlorophenylhydrazone

DCCD

N, N — dicyclohexyl carbodiimide

DNP

2,4-dinitrophenol

PMS

N-methyl phenazinium methyl sulphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cresswell RC & Syrett PJ, J Exp Bot, 32 (1981) 19.CrossRefGoogle Scholar
  2. 2.
    Serra JL, Llama MJ & Cadenas E, Plant Physiol, 62 (1978) 987.PubMedCrossRefGoogle Scholar
  3. 3.
    Schloemer RH & Garret RH, J Bacteriol, 18 (1974) 259.Google Scholar
  4. 4.
    Betlach MR, Tiedje JM & Firestone RB, Arch Microbiol, 129 (1981) 135.PubMedCrossRefGoogle Scholar
  5. 5.
    Thayer JR & Huffaker RC, J Bacteriol, 49 (1982) 198.Google Scholar
  6. 6.
    Revilla E, Llobell A & Paneque A, J Gen Microbiol, 32 (1985) 917.Google Scholar
  7. 7.
    Khanuja SPS, Current Sci, 61 (1991) 545.Google Scholar
  8. 8.
    Reddy AT & Lodha ML, Biochem Physiol Pflanzen, 181 (1986) 209.Google Scholar
  9. 9.
    Downes MT, Water Research, 12 (1978) 673.CrossRefGoogle Scholar
  10. 10.
    Stickland LH, J Gen Microbiol, 5 (1951) 698.PubMedGoogle Scholar
  11. 11.
    Lowry OH, Rosenbrough NJ, Farr AL & Randall RJ, J Biol Chem, 193 (1951) 265.PubMedGoogle Scholar
  12. 12.
    Nieto JM, Herrero A & Flores E, Arch Microbiol, 151 (1989) 475.CrossRefGoogle Scholar
  13. 13.
    Sadasivan L & Neyra CA, Proc Fourth Bayreuth Azospirillum Workshop, (1988) p 131.CrossRefGoogle Scholar
  14. 14.
    Manhart JR & Wong PP, Can J Microbiol, 25 (1979) 1169.PubMedCrossRefGoogle Scholar
  15. 15.
    Flores E, Guerrero MG & Losada M, Biochim Biophys Acta, 722 (1983) 408.CrossRefGoogle Scholar
  16. 16.
    Jackson MA, Jackson JB & Ferguson SJ, FEBS Lett, 135 (1981) 275.CrossRefGoogle Scholar
  17. 17.
    Wilson DB, J Bacteriol, 120 (1974) 866.PubMedGoogle Scholar
  18. 18.
    Nishikimi M, Rao NA & Yagik, Biochem Biophys Res Commun, 86 (1972) 849.CrossRefGoogle Scholar
  19. 19.
    Dreyfus B, Garcia JL & Gillis M, Int J Syst Bacteriol, 38 (1988) 89.CrossRefGoogle Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • K. Siva Raju
    • 1
  • N. D. Sharma
    • 1
  • M. L. Lodha
    • 1
  1. 1.Division of BiochemistryIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations