Advertisement

Effect of Nitrate on Bradyrhizobium — Mungbean (Vigna radiata) Symbiosis in presence of Syringaldehyde

  • Veena Jain
  • Nisha Garg
  • H. S. Nainawatee
Article

Abstract

Bradyrhizoblum — mungbean (Vigna radiata) symbiosis was influenced by the application of nitrate in combination with.yrlngaldehyde. Application of nitrate alone at lower concentrations (2, 5 mM) caused a reduction at initial stage (10 DAS) while at later stage (35 DAS–45 DAS) enhanced the nodulation status (nodule number, nodule weight) and nodule efficiency (acetylene reduction activity). Higher concentration of nitrate (10 mM) caused a reduction in nodule number, nodule weight and acetylene reduction activity. Syringaldehyde alone improved the nodulation status and nodule efficiency while it acted synergistically when applied in combination with nitrate. These effects were also reflected in the biomass of plants.

Key words

Bradyrhizobium sp. Vigna nitrate symbiosis syringaldehyde Vigna radiata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Streeter JG, Plant Physiol, 77 (1985) 321.PubMedCrossRefGoogle Scholar
  2. 2.
    Sawhney V, Singh R & Sawhney SK, Phytochem, 30 (1990) 51.CrossRefGoogle Scholar
  3. 3.
    Glannakis C, Nicholas DJD & Wallace W, Planta, 174 (1988) 51.CrossRefGoogle Scholar
  4. 4.
    Streeter JG, Grit Rev Plant Sci, 7 (1988) 1.CrossRefGoogle Scholar
  5. 5.
    Cho MT & Harper JE, Plant Physiol, 95 (1991) 435.PubMedCrossRefGoogle Scholar
  6. 6.
    Phillips DA, Maxwell CA, Joseph CM & Hartwig UA, Flavonoid nodulation signals in alfalfa. In Nitrogen fixation: Hundred years after, New York (1988) p 411Google Scholar
  7. 7.
    Wall LG & Favelukes G, J Bacteriol, 173 (1991) 3492.PubMedGoogle Scholar
  8. 8.
    Jain V, Garg N & Nainawatee HS, Biochem Physiol Pflanzen, 187 (1991) 331.Google Scholar
  9. 9.
    Jain V, Garg N & Nainawatee HS, National Acad Sci Letters, 14 (1991) 121.Google Scholar
  10. 10.
    Sloger C, Plant Physiol, 44 (1969) 1166.CrossRefGoogle Scholar
  11. 11.
    Hardy AWF, Holsten AD, Jackson EK & Burns AC, Plant Physiol, 43 (1968) 1185.PubMedCrossRefGoogle Scholar
  12. 12.
    Anonymous, Official methods of analysis. 11th edn, Association of Official Agricultural Chemists, Washington, D,C. (1970) P 16.Google Scholar
  13. 13.
    Sherwood JE, Truchet GL & Dazzo FB, Planta, 162 (1984) 540.CrossRefGoogle Scholar
  14. 14.
    Long SA, Gell, 56 (1989) 203Google Scholar
  15. 15.
    Darbyshire JF, Annals Bot, 30 (1966) 623.Google Scholar
  16. 16.
    Kennedy IR, Rigaud J & Trinchant JC, Biochem Biophys Acta, 397 (1975) 24PubMedCrossRefGoogle Scholar
  17. 17.
    Rigaud J & Puppo A, Biochem Biophys Acta, 497 (1977) 702PubMedCrossRefGoogle Scholar
  18. 18.
    Trinchant JC & Aigaud J, J Plant Physiol, 116 (1984) 209.PubMedCrossRefGoogle Scholar
  19. 19.
    Firmin JL, Wilson KE, Rossen L & Johnston AWB, Nature, 324 (1986) 90CrossRefGoogle Scholar
  20. 20.
    Kapulink Y, Joseph GM & Phillips DA, Plant Physiol, 84 (1987) 1193.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Veena Jain
    • 1
  • Nisha Garg
    • 1
  • H. S. Nainawatee
    • 1
  1. 1.Department of Chemistry and BiochemistryCCS Haryana Agricultural UniversityHisarIndia

Personalised recommendations