Skip to main content
Log in

Hypoxic Conditions and Exercise-to-Rest Ratio are Likely Paramount

  • Correspondence
  • Published:
Sports Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Billaut F, Gore CJ, Aughey RJ. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med 2012; 42(9): 751–67.

    PubMed  Google Scholar 

  2. Millet GP, Roels B, Schmitt L, et al. Combining hypoxic methods for peak performance. Sports Med 2010; 40(1): 1–25.

    Article  PubMed  Google Scholar 

  3. Fulco CS, Beidleman BA, Muza SR. Effectiveness of pre-acclimatization strategies for high altitude exposure. Exerc Sport Sci Rev. Epub 2012 May 30.

  4. Richard NA, Koehle MS. Differences in cardio-ventilatory responses to hypobaric and normobaric hypoxia: a review. Aviat Space Environ Med 2012 Jul; 83(7): 677–84.

    Article  PubMed  Google Scholar 

  5. Millet GP, Faiss R, Pialoux V. Point: Hypobaric hypoxia induces different physiological responses from normobaric hypoxia. J Appl Physiol 2012 May; 112(10): 1783–4.

    Article  PubMed  Google Scholar 

  6. Roach RC, Loeppky JA, Icenogle MV. Acute mountain sickness: increased severity during simulated altitude compared with normobaric hypoxia. J Appl Physiol 1996 Nov; 81(5): 1908–10.

    PubMed  CAS  Google Scholar 

  7. Loeppky JA, Roach RC, Maes D, et al. Role of hypobaria in fluid balance response to hypoxia. High Alt Med Biol 2005 Spring; 6(1): 60–71.

    Article  PubMed  CAS  Google Scholar 

  8. Conkin J, Wessel 3rd JH. Critique of the equivalent air altitude model. Aviat Space Environ Med 2008 Oct; 79(10): 975–82.

    Article  PubMed  Google Scholar 

  9. Hemmingsson T, Linnarsson D. Lower exhaled nitric oxide in hypobaric than in normobaric acute hypoxia. Respir Physiol Neurobiol 2009 Oct 31; 169(1): 74–7.

    Article  PubMed  CAS  Google Scholar 

  10. Faiss R, Pialoux V, Sartori C, et al. Ventilation, oxidative stress and nitric oxide in hypobaric vs. normobaric hypoxia. Med Sci Sports Exerc. Epub 2012 Aug 14.

  11. Savourey G, Launay JC, Besnard Y, et al. Normo- and hypobaric hypoxia: are there any physiological differences? Eur J Appl Physiol 2003 Apr; 89(2): 122–6.

    Article  PubMed  Google Scholar 

  12. Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc 2007 Sep; 39(9): 1590–9.

    Article  PubMed  Google Scholar 

  13. Richalet JP, Gore CJ. Live and/or sleep high:train low, using normobaric hypoxia. Scand J Med Sci Sports 2008 Aug; 18 Suppl. 1:29–37.

    Article  PubMed  Google Scholar 

  14. Siebenmann C, Robach P, Jacobs RA, et al. “Live high-train low” using normobaric hypoxia: a double-blinded, placebo-controlled study. J Appl Physiol 2012 Jan; 112(1): 106–17.

    Article  PubMed  Google Scholar 

  15. Ashenden MJ, Gore CJ, Dobson GP, et al. “Live high, train low” does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3000 m for 23 nights. Eur J Appl Physiol Occup Physiol 1999; 80(5): 479–84.

    Article  PubMed  CAS  Google Scholar 

  16. Ashenden MJ, Gore CJ, Martin DT, et al. Effects of a 12-day “live high, train low” camp on reticulocyte production and haemoglobin mass in elite female road cyclists. Eur J Appl Physiol Occup Physiol 1999; 80(5): 472–8.

    Article  PubMed  CAS  Google Scholar 

  17. Geiser J, Vogt M, Billeter R, et al. Training high-living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med 2001 Nov; 22(8): 579–85.

    Article  PubMed  CAS  Google Scholar 

  18. Gore CJ, Hahn AG, Aughey RJ, et al. Live high-train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand 2001 Nov; 173(3): 275–86.

    Article  PubMed  CAS  Google Scholar 

  19. Robach P, Schmitt L, Brugniaux JV, et al. Living high-training low: effect on erythropoiesis and maximal aerobic performance in elite Nordic skiers. Eur J Appl Physiol Occup Physiol 2006 Aug; 97(6): 695–705.

    Article  Google Scholar 

  20. Saunders PU, Telford RD, Pyne DB, et al. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol 2004 Mar; 96(3): 931–7.

    Article  PubMed  CAS  Google Scholar 

  21. Dehnert C, Hutler M, Liu Y, et al. Erythropoiesis and performance after two weeks of living high and training low in well trained triathletes. Int J Sports Med 2002 Nov; 23(8): 561–6.

    Article  PubMed  CAS  Google Scholar 

  22. Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 1997 Jul; 83(1): 102–12.

    PubMed  CAS  Google Scholar 

  23. Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol 2001 Sep; 91(3): 1113–20.

    PubMed  CAS  Google Scholar 

  24. Wehrlin JP, Zuest P, Hallen J, et al. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol 2006 Jun; 100(6): 1938–45.

    Article  PubMed  CAS  Google Scholar 

  25. Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med 2009; 39(2): 107–27.

    Article  PubMed  Google Scholar 

  26. Fulco CS, Muza SR, Beidleman BA, et al. Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude. Am J Physiol Regul Integr Comp Physiol 2011 Feb; 300(2): R428–36.

    Article  PubMed  CAS  Google Scholar 

  27. Faiss R, Léger B, Fournier P-E, et al. Repeated-sprint ability is further enhanced by intensive training in hypoxia than in normoxia. In: Society TP, editor. Biomedical basis of elite performance. London: Proc Physiol Soc, 2012: 38.

    Google Scholar 

  28. McDonough P, Behnke BJ, Padilla DJ, et al. Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. J Physiol 2005 Mar 15; 563 (Pt 3): 903–13.

    Article  PubMed  CAS  Google Scholar 

  29. Cleland SM, Murias JM, Kowalchuk JM, et al. Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and knee-extension exercise. Appl Physiol Nutr Metab 2012 Feb; 37(1): 138–48.

    Article  PubMed  CAS  Google Scholar 

  30. Wilson DF, Erecinska M, Drown C, et al. Effect of oxygen tension on cellular energetics. Am J Physiol 1977 Nov; 233(5): C135–40.

    PubMed  CAS  Google Scholar 

  31. Lecoultre V, Boss A, Tappy L, et al. Training in hypoxia fails to further enhance endurance performance and lactate clearance in well-trained men and impairs glucose metabolism during prolonged exercise. Exp Physiol 2010 Feb; 95(2): 315–30.

    Article  PubMed  CAS  Google Scholar 

  32. Roels B, Millet GP, Marcoux CJ, et al. Effects of hypoxic interval training on cycling performance. Med Sci Sports and Exercise 2005 Jan; 37(1): 138–46.

    Article  Google Scholar 

  33. Roels B, Bentley DJ, Coste O, et al. Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur J Appl Physiol Occup Physiol 2007 Oct; 101(3): 359–68.

    Article  Google Scholar 

  34. Lundby C, Millet GP, Calbet JA, et al. Does ‘altitude training’ increase exercise performance in elite athletes? Br J Sports Med 2012 Jul 14.

  35. Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 1997 Mar; 29(3): 390–5.

    Article  PubMed  CAS  Google Scholar 

  36. Balsom PD, Seger JY, Sjodin B, et al. Physiological responses to maximal intensity intermittent exercise. Eur J Appl Physiol Occup Physiol 1992; 65(2): 144–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millet, G.P., Faiss, R. Hypoxic Conditions and Exercise-to-Rest Ratio are Likely Paramount. Sports Med 42, 1081–1083 (2012). https://doi.org/10.1007/BF03262313

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262313

Keywords

Navigation