, Volume 26, Issue 4, pp 201–208 | Cite as

Therapeutic Applications of Mesenchymal Stem Cells

Current Outlook
  • Siddaraju V. Boregowda
  • Donald G. Phinney
Current Opinion


The past decade has seen tremendous growth in the clinical application of cell-based therapies, and the number of planned human clinical trials to evaluate these therapies continues to increase in number and scope at a rapid pace. A considerable effort on this front has been devoted to evaluating the therapeutic potential of mesenchymal stem cells (MSCs), which were initially characterized as connective tissue progenitors resident in bone marrow. MSCs are now known to possess potent tissue reparative properties that have been linked to secretion of paracrine-acting angiogenic, trophic, anti-inflammatory, and immunomodulatory factors. Accordingly, MSC-based therapies are being evaluated for the treatment of a broad array of ischemic, inflammatory, and immunological disorders. Nevertheless, knowledge regarding how the wide-ranging activities of MSCs vary between and are specified within populations remains largely unexplored. Lack of such knowledge makes it difficult to predict and/or control how sampling bias and ex vivo expansion of populations alters their biological activity and therapeutic potency. Herein, we discuss how heterogeneity of MSC populations may explain, in part, disparate outcomes in both experimental animal and human clinical trial data, and discuss several strategies to achieve more reproducible and efficacious outcomes for MSC-based therapies.


Mesenchymal Stem Cell Human Mesenchymal Stem Cell Human Clinical Trial Human MSCs Mixed Lymphocyte Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors stipulate that they have no conflicts of interest to report.


  1. 1.
    Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976 Sep; 4(5): 267–74PubMedGoogle Scholar
  2. 2.
    Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002 Dec; 13(12): 4279–95PubMedCrossRefGoogle Scholar
  3. 3.
    De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001 Aug; 44(8): 1928–42PubMedCrossRefGoogle Scholar
  4. 4.
    Parolini O, Alviano F, Bagnara GP, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 2008 Feb; 26(2): 300–11PubMedCrossRefGoogle Scholar
  5. 5.
    Summer R, Fitzsimmons K, Dwyer D, et al. Isolation of an adult mouse lung mesenchymal progenitor cell population. Am J Respir Cell Mol Biol 2007 Aug; 37(2): 152–9PubMedCrossRefGoogle Scholar
  6. 6.
    Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000 Dec; 97(25): 13625–30PubMedCrossRefGoogle Scholar
  7. 7.
    Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exofoliated deciduous teeth. Proc Natl Acad Sci U S A 2003 May; 100(10): 5807–12PubMedCrossRefGoogle Scholar
  8. 8.
    Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136: 42–60PubMedGoogle Scholar
  9. 9.
    Phinney DG. Biochemical heterogeienty of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 2007 Dec; 6(23): 2884–9PubMedCrossRefGoogle Scholar
  10. 10.
    Prockop DJ, Kota DJ, Bazhanov N, et al. Evolving paradigms for repair oftissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 2010 Sep; 14(9): 2190–9PubMedCrossRefGoogle Scholar
  11. 11.
    Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 2011 Mar; 208(3): 421–8PubMedCrossRefGoogle Scholar
  12. 12.
    Fujisaki J, Wu J, Carlson AL, et al. In vivo imaging of Treg cells providing immune privilege to the hematopoietic stem-cell niche. Nature 2011 Jun; 474(7350): 216–9PubMedCrossRefGoogle Scholar
  13. 13.
    Phinney DG. Gene expression profiles of mesenchymal stem cells. In: Nolta JA, editor. Genetic engineering of mesenchymal stem cells. The Netherlands: Springer, 2006: 59–80CrossRefGoogle Scholar
  14. 14.
    Hashemi SM, Ghods S, Kolodgie FD, et al. A placebo controlled, doseranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction. Eur Heart J 2008 Jan; 29(2): 251–9PubMedCrossRefGoogle Scholar
  15. 15.
    Halkos ME, Zhao ZQ, Kerendi F, et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 2008 Nov; 103(6): 525–36PubMedCrossRefGoogle Scholar
  16. 16.
    Schuleri KH, Feigenbaum GS, Centola M, et al. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 2009 Nov; 30(22): 2722–32PubMedCrossRefGoogle Scholar
  17. 17.
    Hamamoto H, Gorman JH, Ryan LP, et al. Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: the effect of cell dosage. Ann Thorac Surg 2009 Mar; 87(3): 794–801PubMedCrossRefGoogle Scholar
  18. 18.
    van der Spoel TI, Jansen of Lorkeers SJ, Agostoni P, et al. Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res 2011 Sep; 91(4): 649–58PubMedCrossRefGoogle Scholar
  19. 19.
    Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cells transplantation in post-infarcted rat myocardium: short- and long-term effects. Circulation 2005 Jul; 112(2): 214–23PubMedCrossRefGoogle Scholar
  20. 20.
    Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebocontrolled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009 Dec; 54: 2277–86PubMedCrossRefGoogle Scholar
  21. 21.
    Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Am J Cardiol 2004 Jul; 94(1): 92–5PubMedCrossRefGoogle Scholar
  22. 22.
    Williams AR, Trachtenberg B, Velazquez DL, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 2011 Apr; 108(7): 792–6PubMedCrossRefGoogle Scholar
  23. 23.
    Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008 May; 371(9624): 1579–86PubMedCrossRefGoogle Scholar
  24. 24.
    von Bahr L, Sundberg B, Lonnies L, et al. Long-term complications, immunological effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant. Epub 2011 Aug 4Google Scholar
  25. 25.
    Phinney DG, Kopen G, Righter W, et al. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 1999 Dec; 75: 424–36PubMedCrossRefGoogle Scholar
  26. 26.
    Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19: 180–92PubMedCrossRefGoogle Scholar
  27. 27.
    Dexheimer V, Meuller S, Braatz F, et al. Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age. PLoS One 2011; 6(8): e22980PubMedCrossRefGoogle Scholar
  28. 28.
    Muschler GF, Boehm C, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 1997 Nov; 79(11): 1699–709PubMedGoogle Scholar
  29. 29.
    Wagner W, Ho AD. Mesenchymal stem cell preparations: comparing apples and oranges. Stem Cell Rev 2007 Dec; 3(4): 239–48PubMedCrossRefGoogle Scholar
  30. 30.
    Tokoyoda K, Zehentmeier S, Hegazy AN, et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 2009 May; 30(5): 721–30PubMedCrossRefGoogle Scholar
  31. 31.
    Tokoyoda K, Sehentmeier S, Chang HD, et al. Organization and maintenance of immunological memory by stroma niches. Eur J Immunol 2009 Aug; 39(8): 2095–9PubMedCrossRefGoogle Scholar
  32. 32.
    Russell KC, Phinney DG, Lacey MR, et al. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 2010 Apr; 28(4): 788–98PubMedCrossRefGoogle Scholar
  33. 33.
    Russell KC, Lacey MR, Gilliam JK, et al. Clonal analysis of the proliferation potential of human bone marrow mesenchymal stem cells as a function of potency. Biotechnol Bioeng 2011 Nov; 108(11): 2716–26PubMedCrossRefGoogle Scholar
  34. 34.
    Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 2000 Apr; 113(pt 7): 1161–6PubMedGoogle Scholar
  35. 35.
    Banfi A, Muraglia A, Dozin B, et al. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Expt Hematol 2000 Jun; 28(6): 707–15CrossRefGoogle Scholar
  36. 36.
    Sengers BG, Dawson JI, Oreffo ROC. Characterization of human bone marrow stromal cell heterogeneity for skeletal regeneration strategies using a two-stage colony assay and computational modeling. Bone 2010 Feb; 46(2): 496–503PubMedCrossRefGoogle Scholar
  37. 37.
    Crigler L, Robey RC, Asawachaicharn A, et al. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 2006 Mar; 198(1): 54–64PubMedCrossRefGoogle Scholar
  38. 38.
    Sioud M, Mobergslien A, Boudabous A, et al. Mesenchymal stem cellmediated T cell suppression occurs through secreted galectins. Int J Oncol 2011 Feb; 38(2): 385–90PubMedCrossRefGoogle Scholar
  39. 39.
    Sioud M, Mobergslien A, Boudabous A, et al. Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scand J Immunol 2010 Apr; 71(4): 267–74PubMedCrossRefGoogle Scholar
  40. 40.
    Gieseke F, Bohringer J, Bussolari R, et al. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood 2010 Nov; 116(19): 3770–9PubMedCrossRefGoogle Scholar
  41. 41.
    Ni X, Jia YQ, Meng WT, et al. [Expression of B7-H1 molecule on human bone marrow mesenchymal stem cells and its effects on T lymphocyte proliferation]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2009 Aug; 17(4): 990–3PubMedGoogle Scholar
  42. 42.
    Sheng H, Wang Y, Jin Y, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 2008 Aug; 18(8): 846–57PubMedCrossRefGoogle Scholar
  43. 43.
    Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008 Jan; 26(1): 212–22PubMedCrossRefGoogle Scholar
  44. 44.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005 Feb; 105(4): 1815–22PubMedCrossRefGoogle Scholar
  45. 45.
    Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009 Jul; 5(1): 54–63PubMedCrossRefGoogle Scholar
  46. 46.
    Burns JS, Kristiansen M, Kristensen LP, et al. Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction. PLoS One 2011; 6(7): e21888PubMedCrossRefGoogle Scholar
  47. 47.
    Wang CH, Yao H, Chen LN, et al. CD147 induces angiogenesis through vascular endothelial growth factor and hypoxiainducible transcription factor 1alpha-mediated pathway in rheumatoid arthritis. Arthritis Rheum. Epub 2011 Dec 14Google Scholar
  48. 48.
    Maumus M, Guerit D, Toupet K, et al. Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem Cell Res Ther 2011; 2(2): 14PubMedCrossRefGoogle Scholar
  49. 49.
    Fang X, Neyrinck AP, Matthay MA, et al. Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J Biol Chem 2010 Aug 20; 285(34): 26211–22PubMedCrossRefGoogle Scholar
  50. 50.
    Yew TL, Hung YT, Li HY, et al. Enhancement of wound healing by human multipotent stromal cell conditioned medium: the paracrine factors and p38 MAPK activation. Cell Transplant 2011; 20(5): 693–706PubMedCrossRefGoogle Scholar
  51. 51.
    Imberti B, Morigi M, Tomasoni S, et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 2007 Nov; 18(11): 2921–8PubMedCrossRefGoogle Scholar
  52. 52.
    Seeger FJ, Tonn T, Krzossok N, et al. Cell isolation procedures matter: a comparison of different isolation protocls of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 2007 Mar; 28(6): 766–72PubMedCrossRefGoogle Scholar
  53. 53.
    Lai WT, Krishnappa V, Phinney DG. Fibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levels. Stem Cell 2011 Jul; 29(7): 1102–11CrossRefGoogle Scholar
  54. 54.
    Choi SC, Kim SJ, Choi JH, et al. Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev 2008 Aug; 17(4): 725–36PubMedCrossRefGoogle Scholar
  55. 55.
    Rizzo R, Lanzoni G, Stignani M, et al. A simple method for identifying bone marrow mesenchymal stromal cells with a high immunosuppressive potential. Cytotherapy 2011 May; 13(5): 523–7PubMedCrossRefGoogle Scholar
  56. 56.
    Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008 Feb; 2: 141–50PubMedCrossRefGoogle Scholar
  57. 57.
    Polchert D, Sobinsky J, Douglas G, et al. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 2008 Jun; 38(6): 1745–55PubMedCrossRefGoogle Scholar
  58. 58.
    Hu X, Yu SP, Fraser JL, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 2008 Apr; 135(4): 799–808PubMedCrossRefGoogle Scholar
  59. 59.
    Buyanovskaya OA, Kuleshov NP, Nikitina VA, et al. Spontaneous aneuploidy and clone formation in adipose tissue stem cells during different periods of culturing. Bull Exp Biol Med 2009 Jul; 148(1): 109–12PubMedCrossRefGoogle Scholar
  60. 60.
    Tarte K, Gaillard J, Lataillade JJ, et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 2010 Feb; 115(8): 1549–53PubMedCrossRefGoogle Scholar
  61. 61.
    Ben-David U, Mayshar Y, Benvenisty N. Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 2011 Aug; 9(2): 97–102PubMedCrossRefGoogle Scholar
  62. 62.
    Sensebe L, Tarte K, Galipeau J, et al. Limited acquisition of chromosomal aberrations in human adult mesenchymal stromal cells. Cell Stem Cell 2012 Jan; 10(1): 9–10PubMedCrossRefGoogle Scholar
  63. 63.
    François M, Copland IB, Yuan S, et al. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing. Cytotherapy 2012 Feb; 14(2): 147–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2012

Authors and Affiliations

  1. 1.Department of Molecular TherapeuticsThe Scripps Research InstituteJupiterUSA

Personalised recommendations