Skip to main content
Log in

Tangier Disease

Epidemiology, Pathophysiology, and Management

  • Therapy In Practice
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Tangier disease is one of the most severe forms of familial high-density lipoprotein (HDL) deficiency. Since its discovery it has been diagnosed in about 100 patients and is characterized by severe plasma deficiency or absence of HDL, apolipoprotein A-I (apoA-I, the major HDL apolipoprotein) and by accumulation of cholesteryl esters in many tissues throughout the body. The biochemical signs of this condition are plasma HDL concentrations less than 5mg/dL, low total plasma cholesterol (below 150mg/dL), and normal or high plasma triglycerides. Tangier disease is caused by mutations in the ‘ATP-Binding Cassette transporter Al’ (ABCA1) gene, which encodes the membrane transporter ABCA1. This transporter plays a key role in the first step of reverse cholesterol transport, through which the efflux of free cholesterol from peripheral cells is transferred to lipid-poor apoA-I. The Tangier disease clinical phenotype is inherited as an autosomal recessive trait, the biochemical phenotype is inherited as an autosomal co-dominant trait. Nearly all the children affected by Tangier disease were identified on the basis of large, yellow-orange tonsils, while half of the adult patients affected by Tangier disease came to medical attention because of symptoms of neuropathy. Diagnosis in the remaining subjects was related to the clinical features of hepatomegaly, splenomegaly, premature myocardial infarction (about 30% of Tangier disease cases) or stroke, thrombo-cytopenia, anemia, gastrointestinal disorders, corneal opacities, hypocholesterolemia, low HDL cholesterol, or following a familial screening of Tangier patients.

To date there is no specific treatment for Tangier disease. Old and recently designed drugs, known to increase HDL levels, have been shown to be ineffective in Tangier patients. The possible and more realistic therapeutic strategy should be designed to obtain a selective increase of mature HDL concentration to restore cholesterol efflux. Recently designed drugs like the cholesteryl ester transfer protein (CETP) inhibitors dalcetrapib and anacetrapib and reconstituted forms of HDL could be considered until the development of gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fredrickson DS, Altrocchi PH, Avioli LV, et al. Tangier disease-combined clinical staff conference at the National Institute of Health. Ann Intern Med 1961; 55: 1016

    Article  Google Scholar 

  2. Assman G, von Eckardstein A, Brewer HB. Familial high density lipoprotein deficiency: Tangier disease. In: Scriver CS, Beaudet AL, Sly WS, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001; 2053–72

    Google Scholar 

  3. Sampietro T, Puntoni M, Bigazzi F, et al. Tangier disease in severely progressive coronary and peripheral artery disease. Circulation 2009; 119: 2741–2

    Article  PubMed  Google Scholar 

  4. Brunham LR, Singaraja RR, Hayden MR. Variation on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu Rev Nutr 2006; 26: 105–29

    Article  PubMed  CAS  Google Scholar 

  5. Oram JF, Vaugham AM. ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ Res 2006; 99: 1031–43

    Article  PubMed  CAS  Google Scholar 

  6. Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 2005; 85: 1343–72

    Article  PubMed  CAS  Google Scholar 

  7. Brousseau ME, Schaefer EJ, Dupuis J, et al. Novel mutations in the gene encoding ATP binding cassette 1 in four Tangier disease kindreds. J Lipid Res 2000; 41: 433–41

    PubMed  CAS  Google Scholar 

  8. Clee SM, Kastelein JJP, van Dam M, et al. Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. J Clin Invest 2000; 106: 1263–70

    Article  PubMed  CAS  Google Scholar 

  9. The Human Gene Mutation Database [online]. Available from URL: http://www.hgmd.cf.ac.uk/ac/gene.php?gene=ABCA1 [Accessed 2012 Jul 1]

  10. Bocchi L, Pisciotta L, Fasano T, et al. Multiple abnormally spliced ABCA1 mRNAs caused by a novel splice site mutation of ABCA1 gene in a patient with Tangier disease. Clin Chim Acta 2010 Apr 2; 411 (7–8): 524–30

    Article  PubMed  CAS  Google Scholar 

  11. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, et al. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest 2004; 114: 1343–53

    PubMed  CAS  Google Scholar 

  12. Kyriakou T, Hodgkinson Pontefract DE, et al. Genotypic effect of the — 565C>T polymorphism in the ABCA1 gene promoter on ABCA1 expression and severity of atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25: 418–23

    Article  PubMed  CAS  Google Scholar 

  13. Tregouet DA, Ricard S, Nicaud V, et al. In-depth haplotype analysis of ABCA1 gene polymorphisms in relation to plasma ApoA1 levels and myocardial infarction. Arterioscler Thromb Vasc Biol 2004; 24: 775–81

    Article  PubMed  CAS  Google Scholar 

  14. Tsompanidi EM, Brinkmeier MS, Fotiadou EH, et al. HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis. Atherosclerosis 2010 Jan; 208 (1): 3–9

    Article  PubMed  CAS  Google Scholar 

  15. Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011 Jan 13; 364 (2): 127–35

    Article  PubMed  CAS  Google Scholar 

  16. Rader DJ, Alexander ET, Weibel GL, et al. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 2009 Apr; 50 Suppl.: S189–94

    Article  PubMed  Google Scholar 

  17. Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 2001 Jul; 42 (7): 1007–17

    PubMed  CAS  Google Scholar 

  18. de La Llera-Moya M, Connelly MA, Drazul D, et al. Scavenger receptor class B type I affects cholesterol homeostasis by magnifying cholesterol flux between cells and HDL. J Lipid Res 2001 Dec; 42 (12): 1969–78

    Google Scholar 

  19. Schaefer EJ, Blum CB, Levy RI, et al. Metabolism of high density apolipo-proteins in Tangier disease. N Engl J Med 1978; 299: 905–10

    Article  PubMed  CAS  Google Scholar 

  20. Assman G, Smootz E. High density lipoprotein infusion in plasma exchange in Tangier Disease. Eur J Clin Invest 1978 Jun; 8 (3): 131–5

    Article  Google Scholar 

  21. Schaefer EJ, Anderson DW, Zech LA, et al. Metabolism of high density lipoprotein subfractions and costituents in Tangier disease following the infusion of high density lipoproteins. J Lipid Res 1981 Feb; 22 (2): 217–28

    PubMed  CAS  Google Scholar 

  22. Navab M, Reddy ST, Van Lenten BJ, et al. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol 2011 Apr; 8 (4): 222–32

    Article  PubMed  CAS  Google Scholar 

  23. Shaul PW. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol 2003; 547 (Pt 1): 21–33

    Article  PubMed  CAS  Google Scholar 

  24. Spieker LE, Sudano I, Hurlimann D, et al. High-density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation 2002; 105: 1399–402

    Article  PubMed  CAS  Google Scholar 

  25. Park SH, Park JH, Kang JS, et al. Involvement of transcription factors in plasma HDL protection against TNF-alpha-induced vascular cell adhesion molecule-1 expression. Int J Biochem Cell Biol 2003 Feb; 35 (2): 168–82

    Article  PubMed  CAS  Google Scholar 

  26. Watson A, Navab M, Hama S, et al. Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxided low density lipoprotein. J Clin Invest 1995; 95: 774–82

    Article  PubMed  CAS  Google Scholar 

  27. Watson A, Berliner J, Hama S, et al. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest 1995; 96: 2882–91

    CAS  Google Scholar 

  28. Navab M, Imes SS, Hama SY, et al. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein-1 synthesis and is abolished by high density lipoprotein. J Clin Invest 1991; 88: 2039–46

    Article  PubMed  CAS  Google Scholar 

  29. Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the non-human primate: changes that lead to fatty streak formation. Arteriosclerosis 1984; 4: 323–40

    Article  PubMed  CAS  Google Scholar 

  30. Berliner J, Navab M, Fogelman A, et al. Atherosclerosis: basic mechanism. Oxidation, inflammation and genetics. Circulation 1995; 91: 2488–96

    CAS  Google Scholar 

  31. Mineo C, Deguchi H, Griffin JH, et al. Endothelial and antithrombotic actions of HDL. Circ Res 2006 Jun 9; 98 (11): 1352–64

    Article  PubMed  CAS  Google Scholar 

  32. Pisciotta L, Bocchi L, Candini C, et al. Severe HDL deficiency due to novel defects in the ABCA1 transporter. J Intern Med 2009 Mar; 265 (3): 359–72

    Article  PubMed  CAS  Google Scholar 

  33. Koseki M, Matsuyama A, Nakatani K, et al. Impaired insulin secretion in four Tangier disease patients with ABCA1 mutations. J Atheroscler Thromb 2009 Jun; 16 (3): 292–6

    Article  PubMed  CAS  Google Scholar 

  34. von Eckardstein A. Differential diagnosis of familial high density lipoprotein deficiency syndromes. Atherosclerosis 2006; 186: 231–9

    Article  Google Scholar 

  35. Nofer JR, Remaleyc AT. Tangier disease: still more questions than answers CMLS. Cell Mol Life Sci 2005; 62: 2150–60

    Article  PubMed  CAS  Google Scholar 

  36. Hooper AJ, Robertson K, Ng L, et al. A novel ABCA1 nonsense mutation, R1270X, in Tangier disease associated with an unrecognised bleeding tendency. Clin Chim Acta 2009 Nov; 409 (1–2): 136–9

    Article  PubMed  CAS  Google Scholar 

  37. Maekawa M, Kikuchi J, Kotani K, et al. A novel missense mutation of ABCA1 in transmembrane alpha-helix in a Japanese patient with Tangier disease. Atherosclerosis 2009 Sep; 206 (1): 216–22

    Article  PubMed  CAS  Google Scholar 

  38. Zyss J, Béhin A, Couvert P, et al. Clinical and electrophysiological characteristics of neuropathy associated with Tangier disease. J Neurol 2011 Dec 17: 1–5

    Google Scholar 

  39. von Eckardstein A, Huang Y, Kastelein JJP, et al. Lipid-free apolipoprotein (apo) A-I is converted into alpha-migrating high density lipoproteins by lipoprotein depleted plasma of normolipidemic donors and apoA-I-deficient patients but not of Tangier Disease patients. Atherosclerosis 1998; 138: 25–34

    Article  Google Scholar 

  40. Joyce C, Freeman L, Brewer Jr HB, et al. Study of ABCA1 function in transgenic mice. Arterioscler Thromb Vasc Biol 2003; 23: 965–71

    Article  PubMed  CAS  Google Scholar 

  41. Choi HY, Karten Chan T, et al. Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann-Pick type C disease. J Biol Chem 2003; 278: 32569–77

    Article  PubMed  CAS  Google Scholar 

  42. Hovingh GK, Van Wijland MJ, Brownlie A, et al. The role of the ABCA1 transporter and cholesterol efflux in familial hypoalphalipoproteinemia. J Lipid Res 2003; 44: 1251–5

    Article  PubMed  CAS  Google Scholar 

  43. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, et al. Circulation 2002; 106 (25): 3143–21

  44. Sherman CB, Peterson SJ, Frishman WH. Apolipoprotein A-I mimetic peptides: a potential new therapy for the prevention of atherosclerosis. Cardiol Rev 2010 May-Jun; 18 (3): 141–7

    Article  PubMed  Google Scholar 

  45. Miyazaki A, Sakuma S, Morikawa W, et al. Intravenous injection of rabbit apolipoprotein A-I inhibits the progression of atherosclerosis in cholesterolfed rabbits. Arterioscler Thromb Vasc Biol 1995; 1882–8

  46. Von Eckardstein A, Huang Y, Wu S, et al. Lipoproteins containing apolipoprotein A-IV but not apolipoprotein A-I take up and esterify cell-derived cholesterol in plasma. Arteriosclerosis Thromb Vasc Biol 1995; 15: 1755–63

    Article  Google Scholar 

  47. Eriksson M, Carlson L, Miettinen T, et al. Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I: potential reverse cholesterol transport in humans. Circulation 1999; 100: 594–8

    Article  PubMed  CAS  Google Scholar 

  48. Bisoendial R, Hovingh G, Levels J, et al. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-fensity lipoprotein. Circulation 2003; 107: 2944–8

    Article  PubMed  Google Scholar 

  49. Kyriakou T, Pontefract DE, Viturro E, et al. Functional polymorphism in ABCA1 influences age of symptom onset in coronary artery disease patients. Hum Mol Genet 2007 Jun 15; 16 (12): 1412–22

    Article  PubMed  CAS  Google Scholar 

  50. Sorrenson B, Suetani RJ, Bickley VM, et al. An ABCA1 truncation shows no dominant negative effect in a familial hypoalphalipoproteinemia pedigree with three ABCA1 mutations. Biochem Biophys Res Commun 2011; 409 (3): 400–5

    Article  PubMed  CAS  Google Scholar 

  51. Markel A. The resurgence of niacin: from nicotinic acid to niaspan/laropiprant. Isr Med Assoc J 2011 Jun; 13 (6): 368–74

    PubMed  Google Scholar 

  52. Franceschini G, Werba JP, D’Aquarica AL, et al. Microsomal enzyme inducers raise plasma high density lipoprotein cholesterol levels in healthy control subjects but not in patients with primary hypoalphalipoproteinemia. Clin Pharmacol Ther 1995; 57: 434

    Article  PubMed  CAS  Google Scholar 

  53. Johns DG, Duffy J, Fisher T, et al. On- and off-target pharmacology of torcetrapib: current understanding and implications for the structure activity relationships (SAR), discovery and development of cholesteryl ester-transfer protein (CETP) inhibitors. Drugs 2012; 72 (4): 491–507

    Article  PubMed  CAS  Google Scholar 

  54. Sirtori CR. Investigational CETP antagonists for hyperlipidemia and atherosclerosis prevention. Expert Opin Investig Drugs 2011; 20: 1543–54

    Article  PubMed  CAS  Google Scholar 

  55. Cannon CP, Shah S, Dansky HM, et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med 2010 Dec 16; 363 (25): 2406–15

    Article  PubMed  CAS  Google Scholar 

  56. Lüscher TF, Taddei S, Kaski JC, et al. Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur Heart J 2012 Apr; 33 (7): 857–65

    Article  PubMed  Google Scholar 

  57. Fayad ZA, Mani V, Woodward M, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 2011 Oct 29; 378 (9802): 1547–59

    Article  PubMed  CAS  Google Scholar 

  58. F. Hoffmann-La Roche Ltd. Roche provides update on Phase III study of dalcetrapib. Media release dated 7th May 2012 [online]. Available from URL: http://www.roche.com/media/media_releases/med-cor-2012-05-07.htm [Accessed 2012 Jul 30]

  59. Chenevard R, Hürlimann D, Spieker L, et al. Reconstituted HDL in acute coronary syndromes. Cardiovasc Ther 2012 Apr; 30 (2): e51–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Michele Coceani, MD, for language support in drafting the manuscript. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariarita Puntoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puntoni, M., Sbrana, F., Bigazzi, F. et al. Tangier Disease. Am J Cardiovasc Drugs 12, 303–311 (2012). https://doi.org/10.1007/BF03261839

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03261839

Keywords

Navigation