Drug Investigation

, Volume 3, Issue 5, pp 299–307 | Cite as

Cefetamet: Its In Vitro Activity and Interaction with β-Lactamases and Penicillin-Binding Proteins

  • Wolfgang Cullmann
  • Rudolf L. Then
Review Article


Cefetamet pivoxil (pivoxyl) is an orally active cephalosporin in advanced clinical development sharing a 2-aminothiazolyl- and a methoxyimino-moiety as side chains, in common with other third generation cephalosporins. Consequently, cefetamet is highly active against various Gram-positive and Gram-negative pathogens such as β-haemolytic streptococci [serogroup A: median minimum concentration inhibiting 90% of pathogens (MIC90) 0.06 mg/L; serogroup B: median MIC90 1 mg/L], Streptococcus pneumoniae, Haemophilus influenzae β-lactamase positive (median MIC90 0.25 mg/L), Enterobacteriaceae [Escherichia coli, Klebsiella spp., most Enterobacter spp., Proteus and Providencia spp., Salmonella spp., Shigella spp. and Yersinia enterocolitica (median MIC90 ≤ 2 mg/L)]. Cefetamet is inactive against Staphylococcus spp., Pseudomonas aeruginosa, and most members of Bacteroides and Clostridia spp.

Cefetamet is not affected by most plasmid-mediated β-lactamases, such as the TEM-1/-2, OX A 1–3 and SHV enzymes. Moreover, it exhibits greater stability against the recently evolved ‘extended-spectrum’ β-lactamases than many other third generation cephalosporins; however, it is inactive against TEM-3 (synonym CTX-l)-producing isolates, although fully active against the ‘new’ SHV-enzyme-producing isolates. There was complete cross-resistance between Cefetamet and the third generation cephalosporins in cephalosporinase-(Richmond’s and Sykes class I classification) overproducing enterobacteria. On the contrary, Cefetamet was more stable against the class III P. vulgaris enzyme than most other oxyimino-cephalosporins. Cefetamet exhibited high affinity for the penicillin-binding proteins (PBPs) 3 [concentration required to decrease binding of 14C-benzylpenicillin by 50% (IC50): 2.5 mg/L] and PBP la (IC50: 4.2 mg/L) of E. coli W3110 and for the PBPs 3 (IC50: 1.3 mg/L) and PBP la (IC50: 0.3 mg/L) of E. cloacae 908 S, but had very low affinity for S. aureus PBPs (IC50 ≥ 50 mg/L), thus explaining its lack of clinically relevant activity against staphylococci.


Cephalosporin Drug Invest Clavulanic Acid Cefaclor Generation Cephalosporin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angehrn P, Hohl P, Then RL. In vitro antibacterial properties of Cefetamet and in vivo activity of its orally absorbable ester derivative, Cefetamet Pivoxil. European Journal of Clinical Microbiology and Infectious Diseases 8: 536–543, 1989CrossRefGoogle Scholar
  2. Aspiotis A, Cullmann W, Dick W, Stieglitz M. Inducible β-lactamases are principally responsible for the naturally occurring resistance towards β-lactam antibiotics in Proteus vulgaris. Chemotherapy 32: 236–246, 1986PubMedCrossRefGoogle Scholar
  3. Bush K, Singer SB. Biochemical characteristics of extended broad spectrum β-lactamases. Infection 17: 429–433, 1989PubMedCrossRefGoogle Scholar
  4. Campos J, Garcia-Tornel S, Sanfeliu I. Susceptibility studies of multiply resistant Haemophilus influenzae isolated from pediatric patients and contacts. Antimicrobial Agents and Chemotherapy 25: 706–709, 1984PubMedCrossRefGoogle Scholar
  5. Chau PY, Leung YK, Ng WWS, Arnold K. Comparative in vitro antibacterial activities of two new oral cephalosporins, cefteram (Ro 19–5247) and Cefetamet (Ro 15–8074). Antimicrobial Agents and Chemotherapy 31: 473–476, 1987PubMedCrossRefGoogle Scholar
  6. Cullmann W, Dick W. Cefpodoxime: Comparable evaluation with other orally available cephalosporins. With a note on the role of β-lactamases. Zentralblätt für Bakteriologie 273: 501–517, 1990PubMedCrossRefGoogle Scholar
  7. Cullmann W, Dick W, Stieglitz M, Opferkuch W. Comparable evaluation of orally active beta-lactam compounds in ampicillin-resistant gram-positive and gram-negative rods: role of beta-lactamases on resistance. Chemotherapy 34: 202–215, 1988PubMedCrossRefGoogle Scholar
  8. Cullmann W, Seibert G. Properties of an inducible β-lactamase from Proteus vulgaris. Zentralblätt für Bakteriologie 262: 208–219, 1986Google Scholar
  9. Dabernat H, Delmas C, Lareng MB. Prévalence de la résistance aux antibiotiques des Haemophilus influenzae isolés en france: un an d’activité du réseau de surveillance des infections à H. influenzae. Pathologie Biologie 34: 372–378, 1986PubMedGoogle Scholar
  10. Doern GV, Jorgensen JH, Thornsberry C, Preston DA. Prevalence of antimicrobial resistance among clinical isolates of Haemophilus influenzae: a collaborative study. Diagnostic Microbiology and Infectious Disease 4: 95–107, 1986PubMedCrossRefGoogle Scholar
  11. Doern GV, Jorgensen JH, Thornsberry C, Preston DA, Tubert T, et al. National collaborative study of the prevalence of antimicrobial resistance among clinical isolates of Haemophilus influenzae. Antimicrobial Agents and Chemotherapy 32: 180–185, 1988PubMedCrossRefGoogle Scholar
  12. Fass RJ, Helsel VL. In vitro activities of Ro 19–5247 and Ro 15–8074, new oral cephalosporins. Antimicrobial Agents and Chemotherapy 30: 429–434, 1986PubMedCrossRefGoogle Scholar
  13. Grassias-Berardi LD, Boisivon A, Bigel ML. Étude de la sensibilité à Fampicilline de 148 souches à Haemophilus influenzae isolées dans deux hôpitaux généraux. Pathologie Biologie 35: 523–525, 1987Google Scholar
  14. Gross RJ, Ward LR, Threlfall EJ, King H, Rowe B. Drug resistance among infantile enteropathogenic Escherichia coli strains isolated in the United Kingdom. British Medical Journal 285: 472–473, 1982PubMedCrossRefGoogle Scholar
  15. Hohl P, Rufli T, Gelzer D. Inhibitory activity against N. gonorrhoeae. Fortschritte der antimikrobiellen und antineoplatischen Chemotherapie 6–8: 1259–1265, 1987Google Scholar
  16. Hohl P, von Graevenitz A, Zollinger-Iten J. Cefetamet Pivoxil: bacteriostatic and bactericidal activity of the free acid against 355 gram-negative rods. Infection 16: 194–198, 1988PubMedCrossRefGoogle Scholar
  17. Kanellakopoulou K, Giamarellou H, Avlamis A. Surveillance study of resistance in Haemophilus species in Greece. European Journal of Clinical Microbiology and Infectious Diseases 7: 186–188, 1988CrossRefGoogle Scholar
  18. Kayser FH, Morenzoni G, Santanam P. The second European collaborative study on the frequency of antimicrobial resistance in Haemophilus influenzae. European Journal of Clinical Microbiology and Infectious Diseases 9: 810–817, 1CrossRefGoogle Scholar
  19. Kayser FH, Wüst J, Hohl P. Vergleich der antibakteriellen Aktivitäten von Ro 15–8074 (Cefetamet) und Ro 19–5247 (T-2525) mit Cefaclor, Cefalexin, Cefadroxil und weiteren Cephalosporinen. FAC 6–8: 1249–1257, 1987Google Scholar
  20. Kitzis MD, Liassine N, Ferré B, Gutmann L, Acar JF, et al. In vitro activities of 15 oral β-lactamases against Klebsiella pneumoniae harboring new extended-spectrum β-lactamases. Antimicrobial Agents and Chemotherapy 34: 1783–1786, 1990PubMedCrossRefGoogle Scholar
  21. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11: 315–317, 1983PubMedCrossRefGoogle Scholar
  22. Lionsquy G, Delaitre E, Pin P, Bourlioux P, Bourlioux N. Fréquences d’isolement et résistance aux antibiotiques des E. coli responsables d’infections urinaires en ville, en centre hospitalier spécilisé et centre hospitalier général. Pathologie Biologie 32: 389–392, 1984PubMedGoogle Scholar
  23. Machka K, Braveny I, Dabernat K, Dornbusch K, van Dyck E, et al. Distribution and resistance patterns of Haemophilus influenzae: a European cooperative study. European Journal of Clinical Microbiology and Infectious Diseases 7: 14–24, 1988CrossRefGoogle Scholar
  24. Mittermayer H. In vitro activity of Cefetamet (Ro 15–8074). European Journal of Clinical Microbiology 5: 530–534, 1986PubMedCrossRefGoogle Scholar
  25. Neu HC, Chin NX, Labthavikul P. In vitro activity and β-lactamase stability of two oral cephalosporins, ceftetrame (Ro 19–5247) and Cefetamet (Ro 15–8074). Antimicrobial Agents and Chemotherapy 30: 423–428, 1986PubMedCrossRefGoogle Scholar
  26. Ng WS, Chau PY, Leung YK, Wong PCL. In vitro activity of Ro 15–8074, a new oral cephalosporin, against Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy 28: 461–463, 1985PubMedCrossRefGoogle Scholar
  27. Peeters M, Piot P. In vitro activity of Ro 15–8074, a new oral cephalosporin. Journal of Antimicrobial Chemotherapy 16: 469–473, 1985PubMedCrossRefGoogle Scholar
  28. Philippon A, Riou JY, Guibourdenche M, Sotolongo F. Detection, distribution and inhibition of Branhamella catarrhalis β-lactamases. Drugs 1: 64–69, 1986CrossRefGoogle Scholar
  29. Richmond MH, Sykes RB. The β-lactamases of gram-negative bacteria and their possible physiological role. Advances in Microbial Physiology 2: 31–88, 1973CrossRefGoogle Scholar
  30. Sirot D, Chanal C, Labia R, Sirot J. Susceptibility of new β-lactams to the expanded-spectrum β-lactamase CTX-1. Infection 17: 28–30, 1989PubMedCrossRefGoogle Scholar
  31. Sougakoff W, Goussard S, Gerbaud G, Courvalin P. Plasmid-mediated resistance to third-generation cephalosporins due to point mutations in TEM-type penicillinase genes. Reviews of Infectious Diseases 10: 879–884, 1988PubMedCrossRefGoogle Scholar
  32. Soussy C, Duval J, Courvalin P. Resistance aux antibiotiques chez Escherichia coli: états actuel et nouvelles acquisitions. Medicine et Maladies Infectieuses 1: 29–36, 1989Google Scholar
  33. Stobberingh EE, Wunderink M, Philips M, Houben A. Branhamella catarrhalis: β-lactamase production and sensitivity to oral antibiotics, including new cephalosporins. Journal of Antimicrobial Chemotherapy 20: 765–770, 1987PubMedCrossRefGoogle Scholar
  34. Then RL. Interaction of two new cephalosporins, Cefetamet and cefteram, with beta-lactamases and penicillin binding proteins. Progress in Antimicrobial Anticancer Chemotherapy 1: 185–187, 1987Google Scholar
  35. Wise R, Andrews JM, Piddock LJV. In vitro activity of Ro 15–8074 and Ro 19–5247, two orally administered cephalosporin metabolites. Antimicrobial Agents and Chemotherapy 29: 1067–1072, 1986PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1991

Authors and Affiliations

  • Wolfgang Cullmann
    • 1
  • Rudolf L. Then
    • 1
  1. 1.Pharma Division/Preclinical ResearchF. Hoffmann-La Roche LtdBasleSwitzerland

Personalised recommendations