Clinical Immunotherapeutics

, Volume 1, Issue 4, pp 293–306 | Cite as

Papillomavirus Vaccines

Current Status
  • John Cason
Review Article Disease Treatment Review

Summary

Human papillomaviruses (HPVs) cause a variety of proliferative lesions, the vast majority of which are benign and self-limiting. Infection with certain HPVs has however been linked with malignancy. Of particular interest is HPV-16, which is strongly associated with cervical carcinoma.

Advances in molecular biology now permit the testing and introduction of vaccines aimed at preventing primary HPV-16 infections, or treating established HPV-16 carcinomas. For success, the actual immunisation strategy chosen will be dependent upon a detailed knowledge of the natural history of HPV-16 infection. Although it has long been assumed that HPV-16 is primarily acquired solely by sexual contact, recent studies have shown that HPV-16 can also be transmitted from mother to child.

This review considers the prospects for prophylactic and therapeutic vaccination against HPV-16 with respect to the potential protein targets and context of disease history. The majority of technical problems regarding the development of vaccines have now been overcome. What is now required is investment by the major pharmaceutical companies so that definitive clinical trials can be undertaken.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Villiers EM. Heterogeneity of the human papillomavirus group. J Virol 1989; 63: 4898–903PubMedGoogle Scholar
  2. 2.
    Steinberg BM. Laryngeal papillomas: clinical aspects and in vitro studies. In: Salzman NP, Howley PM, editors. The Papovaviridae, Vol. II, The Papillomaviruses. New York: Plenum Press, 1987: 265–92CrossRefGoogle Scholar
  3. 3.
    Munoz N, Bosch FX. Epidemiology of cervical cancer. In: Munoz N, Bosch FX, Jensen OM, editors. Human papillomaviruses and cervical cancer. Lyon: IARC Scientific Publications, 1989: 9–40Google Scholar
  4. 4.
    zur Hausen H. Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers. Cancer Res 1989; 49: 4677–81PubMedGoogle Scholar
  5. 5.
    Galloway DA, McDougall JK. Human papillomaviruses and carcinomas. Adv Virus Res 1990; 37: 125–71CrossRefGoogle Scholar
  6. 6.
    Syrjanen K, Parkkinen S, Mantyjarvi R, et al. Human papillomavirus type as an important determinant of the natural history of human papillomavirus infections of the uterine cervix. Eur J Epidemiol 1985; 1: 180–7PubMedCrossRefGoogle Scholar
  7. 7.
    Rogo KO. Mortality in acute gynaecology: a developing country perspective. Int J Gynecol Obstet 1989; 30: 343–7CrossRefGoogle Scholar
  8. 8.
    Van der Brule AJC, Claas ECJ, du Maine M, et al. Use of anti-contamination primers in the polymerase chain reaction for the detection of human papillomavirus genotypes in cervical scrapes and biopsies. J Med Virol 1989; 29: 20–7PubMedCrossRefGoogle Scholar
  9. 9.
    Pao CC, Lin CY, Maa JS, et al. Detection of human papillomaviruses in cervicovaginal cells using the polymerase chain reaction. J Infect Dis 1990; 161: 113–5PubMedCrossRefGoogle Scholar
  10. 10.
    Labeit D, Back W, Weizsacker FV, et al. Increased detection of HPV-16 virus in invasive, but not early cervical cancers. J Med Virol 1992; 36: 131–5PubMedCrossRefGoogle Scholar
  11. 11.
    Gissmann L, Schwartz E. Persistence and expression of human papillomavirus DNA in genital cancer. In: Papillomaviruses, Ciba Foundation Symposium 120. Chichester: Wiley, 1986: 190–207CrossRefGoogle Scholar
  12. 12.
    Yee C, Krishnan-Hewlett I, Baker CC, et al. Presence and expression of human papillomavirus sequences in human cervical cell lines. Am J Pathol 1985; 119: 361–6PubMedGoogle Scholar
  13. 13.
    Jewers RJ, Hildebrandt P, Ludlow JW, et al. Regions of human papillomavirus type 16 oncoprotein required for immortalization of human keratinocytes. J Virol 1992; 66: 1329–35PubMedGoogle Scholar
  14. 14.
    Tidy JA, Wrede D. Tumor suppressor genes: new pathways in gynaecological cancer. Int J Gynaecol Canc 1992; 2: 1–8CrossRefGoogle Scholar
  15. 15.
    Christophersen EM, Parker JE, Mendez WM. Cervix cancer death rates and mass cytologic screening. Cancer 1970; 26: 808–16CrossRefGoogle Scholar
  16. 16.
    Timonen S, Niemine V, Kauramiemi T. Cervical screen. Lancet 1974; 1: 401PubMedCrossRefGoogle Scholar
  17. 17.
    Collette HJA, Lindhorst G, De Waard F. Rapport over de werkzaambeden van ‘Cyt-U-Universitair’ inzak de vronge diagnostick van het cervic carcinoom. Utrecht 1974: 12Google Scholar
  18. 18.
    Walton Report. Cervical cancer screening programs. Can Med Assoc J 1976; 114: 1003–7Google Scholar
  19. 19.
    Macgregor JE, Teper S. Mortality from carcinoma of cervix uteri in Britain. Lancet 1978; 2: 774PubMedCrossRefGoogle Scholar
  20. 20.
    Office of population census and survey. Mortality statistics for England and Wales: Cause. Series DH2 1990; 17: 14Google Scholar
  21. 21.
    Jordan M. Treatment of CIN by destruction. In: Jordan JA, Sharp F, Singer A, editors. Pre-clinical neoplasia of the cervix. London: Royal College of Obstetricians and Gynaecologists, 1982: 185–6Google Scholar
  22. 22.
    Pfister H, Fuchs P. Papillomaviruses: Particles, genome organisation and proteins. In: Syrjanen K, Gissmann L, Koss LG, editors. Papillomaviruses and human disease. Berlin: Springer-Verlag, 1987: 6–15Google Scholar
  23. 23.
    Fredericks BD, Balkin A, Daniel HW, et al. Transmission of human papillomaviruses from mother to child. Aust NZ J Obstet Gynaecol 1993; 33: 30–2CrossRefGoogle Scholar
  24. 24.
    Pakarian F, Kaye J, Cason J, et al. Perinatal transmission and persistence of human papillomavirus types 16 and 18. In: Stanley M, editor. Immunology of papillomavirus infections. New York: Plenum Press. In pressGoogle Scholar
  25. 25.
    Smotkin D. Virology of human papillomavirus. Clin Obst Gynaecol 1989; 32: 117–26CrossRefGoogle Scholar
  26. 26.
    Kashima HK, Kessis T, Mounts P, et al. PCR identification of human papillomavirus DNA in CO2 laser plume from recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg 1991; 104: 191–5PubMedGoogle Scholar
  27. 27.
    Schwarz E, Freese UK, Gissmann L, et al. Structure and transcription of human papillomavirus sequences in cervical cancer cells. Nature 1985; 314: 111–4PubMedCrossRefGoogle Scholar
  28. 28.
    Baker CC, Phelps WC, Lindgren V, et al. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol 1987; 61: 962–71PubMedGoogle Scholar
  29. 29.
    Durst M, Kleinheinz A, Hotz M, et al. The physical state of human papillomavirus type 16 DNA in benign and malignant tumors. J Gen Virol 1985; 66: 1515–22PubMedCrossRefGoogle Scholar
  30. 30.
    Smotkin D, Wettstein FO. Transcription of human papillomavirus type 16 early genes in cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci USA 1986; 83: 4680–4PubMedCrossRefGoogle Scholar
  31. 31.
    Durst M, Croce CM, Gissmann L, et al. Papillomavirus sequences integrate near cellular oncogenes in some cervical cancers. Proc Natl Acad Sci USA 1987; 84: 1070–4PubMedCrossRefGoogle Scholar
  32. 32.
    Gissmann L, Schwartz E. Persistence and expression of human papillomavirus DNA in genital cancer. In: Papillomaviruses, Ciba Foundation Symposium 120. Chichester: Wiley, 1986: 190–207CrossRefGoogle Scholar
  33. 33.
    Munger K, Phelps WC, Bubb V, et al. The E6 and E7 genes of human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 1989; 63: 4417–21PubMedGoogle Scholar
  34. 34.
    Pim D, Collins M, Banks L. Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 1992; 7: 27–32PubMedGoogle Scholar
  35. 35.
    Wank R, Thomssen C. High risk of squamous cell carcinoma of the cervix for women with HLA-DQw3. Nature 1991; 352: 723–5PubMedCrossRefGoogle Scholar
  36. 36.
    Wank R, Schendel DJ, Thomssen C. HLA antigens and cervical carcinoma. Nature 1992; 356: 22–3PubMedCrossRefGoogle Scholar
  37. 37.
    Helland A, Borresen AL, Kaern J, et al. HLA antigens and cervical carcinoma. Nature 1992; 356: 23PubMedCrossRefGoogle Scholar
  38. 38.
    Glew SS, Stern PL, Davidson JA, et al. HLA antigens and cervical cancer. Nature 1992; 356: 22PubMedCrossRefGoogle Scholar
  39. 39.
    Klitz W. Viruses, cancer and the MHC. Nature 1992; 356: 17–8PubMedCrossRefGoogle Scholar
  40. 40.
    Wank R, Meulen JT, Luande J, et al. Cervical intraepithelial neoplasia cervical carcinoma and risk for patients with HLA-DQB1*0602, *301, *0303 alleles. Lancet 1993; 341: 1215PubMedCrossRefGoogle Scholar
  41. 41.
    Han R, Breitburd F, Marche PN, et al. Linkage of regression and malignant conversion of rabbit viral papillomas to MHC class II genes. Nature 1992; 356: 66–8PubMedCrossRefGoogle Scholar
  42. 42.
    Nasiell K, Nasiell M, Vadavinkova V, et al. Follow-up studies of cytologically detected precancerous lesions of the uterine cervix. In: Health control in the detection of cancer (Skandia International Symposia). Stockholm: Almqvist & Wiksell, 1976: 244–52Google Scholar
  43. 43.
    Benton C, Shahidullah H, Hunter JAA. Human papillomavirus in the immunosuppressed. Papillomavirus Rep 1992; 3: 23–6Google Scholar
  44. 44.
    Tay SK, Jenkins D, Maddox PH, et al. Subpopulations of Langerhans cells in cervical neoplasia. Br J Obst Gynaecol 1987; 94: 10–5CrossRefGoogle Scholar
  45. 45.
    Barton SE, Maddox PH, Jenkins D, et al. Effect of cigarette smoking on cervical immunity: a mechanism for neoplastic change. Lancet 1988; 2: 652–4PubMedCrossRefGoogle Scholar
  46. 46.
    Chen H-D, Zhao Y, Sun G, et al. Occurrence of Langerhans’ cells and expression of class II antigens on keratinocytes in malignant and benign epithelial tumors of the skin: an immunohistopathologic study with monoclonal antibodies. J Am Acad Dermatol 1989; 20: 1007–14PubMedCrossRefGoogle Scholar
  47. 47.
    Bal V, McIndoe A, Denton G, et al. Antigen presentation by keratinocytes induces tolerance in human T-cells. Eur J Immunol 1990; 20: 1893–7PubMedCrossRefGoogle Scholar
  48. 48.
    Malejczyk J, Majewski S, Jablonska S, et al. Abrogated NK-cell lysis of human papillomavirus type 16 bearing keratinocytes in patients with precancerous and cancerous HPV-induced anogenital lesions. Int J Cancer 1989; 43: 209–14PubMedCrossRefGoogle Scholar
  49. 49.
    Campo MS, Moar MH, Jarrett WHF, et al. A new papillomavirus associated with alimentary cancer in cattle. Nature 1980; 286: 180–2CrossRefGoogle Scholar
  50. 50.
    Kreider JW, Howett MK, Leure-Dupree AE, et al. Laboratory production in vivo of infectious human papillomavirus type-11. J Virol 1987; 61: 590–3PubMedGoogle Scholar
  51. 51.
    Stanley MA, Browne HM, Appleby M, et al. Properties of a non-tumorogenic human cervical keratinocyte cell line. Int J Cancer 1989; 43: 672–9PubMedCrossRefGoogle Scholar
  52. 52.
    Taichman LB, Breitburd F, Croissant O, et al. The search for a culture system for papillomaviruses. J Invest Dermatol 1984; 83: 2–6CrossRefGoogle Scholar
  53. 53.
    Meyers C, Frattini MG, Hudson JB, et al. Biosynthesis of human papillomavirus type 31b from a continuous cell line upon epithelial differentiation. Science 1992; 257: 971–3PubMedCrossRefGoogle Scholar
  54. 54.
    Sterling J, Stanley M, Gatward G, et al. Production of human papillomavirus type 16 virions in a keratinocyte cell line. J Virol 1990; 64: 6305–7PubMedGoogle Scholar
  55. 55.
    Cason J, Best JM. Antibody responses to human papillomavirus type-16 infections. Rev Med Virol 1991; 1: 201–9CrossRefGoogle Scholar
  56. 56.
    Jochmus-Kudielka I, Schneider A, Braun R, et al. Antibodies against the human papillomavirus type 16 early proteins in human sera: correlation of anti-E7 reactivity with cervical cancer. J Natl Cancer Inst 1989; 81: 1698–704PubMedCrossRefGoogle Scholar
  57. 57.
    Muller M, Gausepohl H, Martynoff G, et al. Identification of seroreactive regions of the human papillomavirus type 16 proteins E4, E6, E7 and L1. J Gen Virol 1990; 71: 2709–17PubMedCrossRefGoogle Scholar
  58. 58.
    Jenison SA, Xiu-ping Y, Valentine JM, et al. Evidence of prevalent genital-type human papillomavirus infections in adults and children. J Infect Dis 1990; 162: 60–9PubMedCrossRefGoogle Scholar
  59. 59.
    Cason J, Kambo PK, Best JM, et al. Detection of antibodies to a linear epitope on the major coat protein (L1) of human papillomavirus type 16 in sera from patients with cervical intraepithelial neoplasia and children. Int J Cancer 1992; 50: 349–55PubMedCrossRefGoogle Scholar
  60. 60.
    Dillner L, Bekassy Z, Jonsson N, et al. Detection of IgA antibodies against human papillomavirus in cervical secretions from patients with cervical intraepithelial neoplasia. Int J Cancer 1989; 43: 36–40PubMedCrossRefGoogle Scholar
  61. 61.
    Le Bouvier GL, Sussman M, Crawford LV. Antigenic diversity of mammalian papillomaviruses. J Gen Microbiol 1966; 45: 497–501Google Scholar
  62. 62.
    Favre M, Breitburd F, Croissant O, et al. Structural polypeptides of rabbit, bovine and human papillomaviruses. J Virol 1975; 15: 1239–47PubMedGoogle Scholar
  63. 63.
    Pfister H, Nurnberger F, Gissmann L, et al. Characterisation of a human papillomavirus from epidermodysplasia verruciformis lesions in a patient from Upper Volta. Int J Cancer 1981; 27: 645–50PubMedCrossRefGoogle Scholar
  64. 64.
    Jensen AB, Rosenthal JR, Olson C, et al. Immunological relatedness of papillomaviruses from different species. J Natl Cancer Inst 1980; 64: 495–500Google Scholar
  65. 65.
    Christensen ND, Kreider JW. Antibody-mediated neutralisation in vivo of infectious papillomaviruses. J Virol 1990; 64: 3151–6PubMedGoogle Scholar
  66. 66.
    Jarrett WHF, Campo MS, O’Neil BW, et al. A novel bovine papillomavirus (BPV-6) causing true epithelial papillomas of the mammary gland skin: a member of a proposed new BPV subgroup. Virology 1984; 136: 255–64PubMedCrossRefGoogle Scholar
  67. 67.
    Steele JC, Gallimore PH. Humoral assays of human sera to disrupted and non-disrupted epitopes of human papillomavirus type-1. Virology 1990; 174: 388–98PubMedCrossRefGoogle Scholar
  68. 68.
    Davies DH, McIndoe GAJ, Chain BM. Current status review. Cancer of the cervix: prospects of immunological control. Int J Exp Pathol 1991; 72: 239–51PubMedGoogle Scholar
  69. 69.
    Einhorn N, Ling P, Stander H. Systemic interferon alpha treatment of human condylomata acuminata. Acta Obst Gynaecol Scand 1983; 62: 285–7CrossRefGoogle Scholar
  70. 70.
    Vesterinen E, Meyer B, Purola E, et al. Treatment of vaginal flat condylomata with interferon cream. Lancet 1984; 1: 157PubMedCrossRefGoogle Scholar
  71. 71.
    Schonfeld A, Schattner A, Crespi M, et al. Intramuscular human interferon beta injections in the treatment of condylomata acuminata. Lancet 1984; 1: 1038–42PubMedCrossRefGoogle Scholar
  72. 72.
    Turek LP, Byrne JC, Lowy DR. Interferon induces morphological reversion with elimination of extrachromosomal viral genomes in bovine papillomavirus transformed mouse cells. Proc Natl Acad Sci USA 1982; 79: 7914–18PubMedCrossRefGoogle Scholar
  73. 73.
    Storey A, Oates D, Banks L, et al. Anti-sense phosphorothiate oligonucleotides have both specific and non-specific effects on cells containing human papillomavirus type 16. Nucleic Acids Res 1991; 19: 4109–14PubMedCrossRefGoogle Scholar
  74. 74.
    Doeberitz MVK, Rittmuller C, zur Hausen H, et al. Inhibition of tumorogenicity of cervical cancer cells in nude mice by HPV E6 and E7 antisense mRNA. Int J Cancer 1992; 51: 831–4CrossRefGoogle Scholar
  75. 75.
    Baskar S, Ostrand-Rosenberg S, Nabavi N, et al. Constitutive expression of B7 restores immunogenicity of tumour cells expressing truncated major histocompatibility complex class II molecules. Proc Natl Acad Sci USA 1993; 90: 5687–90PubMedCrossRefGoogle Scholar
  76. 76.
    Jarrett WHF, O’Neil BW, Gaukroger JM, et al. Studies on vaccination against papillomaviruses: a comparison of purified virus, tumor extract and transformed cells in prophylactic vaccination. Vet Record 1990; 126: 449–52Google Scholar
  77. 77.
    Jarrett WHF, O’Neil BW, Gaukroger JM, et al. Studies on vaccination against papillomaviruses: the immunity after infection and vaccination with bovine papillomaviruses of different types. Vet Record 1990; 126: 473–5Google Scholar
  78. 78.
    Pilacinski WP, Glassman DL, Glassman KF, et al. Immunization against bovine papillomavirus infection. In: Papillomaviruses: Ciba Foundation Symposium 120. Chichester: Wiley, 1986: 136–56Google Scholar
  79. 79.
    Jarrett WFH, Smith KT, O’Neil BW, et al. Studies on vaccination against papillomaviruses: prophylactic and therapeutic vaccination with recombinant structural proteins. Virology 1991; 184: 33–42PubMedCrossRefGoogle Scholar
  80. 80.
    Cason J, Kambo PK, Jewers RJ, et al. Mapping of linear B-cell epitopes on capsid proteins of bovine papillomavirus: identification of three type-restricted epitopes. J Gen Virol. In pressGoogle Scholar
  81. 81.
    Christensen ND, Kreider JW, Kan NC, et al. The L2 open reading frame of cottontail rabbit papillomavirus contains antibody-inducing neutralizing epitopes. Virology 1991; 181: 572–9PubMedCrossRefGoogle Scholar
  82. 82.
    Lin Y-L, Borenstein LA, Selvakumar R, et al. Effective vaccination against papilloma development by immunization with L1 or L2 structural protein of cottontail rabbit papillomavirus. Virology 1992; 187: 612–9PubMedCrossRefGoogle Scholar
  83. 83.
    Blundell TL, Sibanda BL, Sternberg MJE, et al. Knowledge-based prediction of protein structures and the design of novel molecules. Nature 1987; 326: 347–52PubMedCrossRefGoogle Scholar
  84. 84.
    Christensen ND, Kreider JW, Shah KV, et al. Detection of human serum antibodies that neutralize infectious human papillomavirus type 11 virions. J Gen Virol 1992; 73: 1261–7PubMedCrossRefGoogle Scholar
  85. 85.
    Carter JJ, Yaegashi N, Jenison SA, et al. Expression of human papillomavirus proteins in yeast Saccharomyces cerevisiae. Virology 1991; 182: 513–21PubMedCrossRefGoogle Scholar
  86. 86.
    Xi S-Z, Banks LM. Baculovirus expression of the human papillomavirus type 16 capsid proteins: detection of L1-L2 protein complexes. J Gen Virol 1991; 72: 2981–8PubMedCrossRefGoogle Scholar
  87. 87.
    Seedorf K, Drammer G, Durst M, et al. Human papillomavirus type 16 DNA sequence. Virology 1985; 145: 181–5PubMedCrossRefGoogle Scholar
  88. 88.
    Kennedy I, Haddow J, Stanley M, et al. Regulated late mRNA stability as a means of controlling HPV-16 late gene expression. Proceedings of the IXth International Congress of Virology; 1993 August 8–13; Glasgow, Scotland: P45–6Google Scholar
  89. 89.
    Kirnbauer R, Booy Y, Cheng N, et al. Papillomavirus L1 major capsid protein self assembles into virus like particles that are highly immunogenic. Proc Natl Acad Sci USA 1992; 89: 12180–4PubMedCrossRefGoogle Scholar
  90. 90.
    Barnes DM. AIDS vaccine trial OKed. Science 1987; 237: 973PubMedCrossRefGoogle Scholar
  91. 91.
    Geysen HM, Rodda SJ, Mason TJ. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol 1986; 23: 709–16PubMedCrossRefGoogle Scholar
  92. 92.
    Rao KVS, Panda SK, Manivel V. Macromolecular self-association of a synthetic peptide derived from hepatitis B surface antigen: construction of a quaternary epitope. Vaccine 1992; 10: 204–8PubMedCrossRefGoogle Scholar
  93. 93.
    Cubie HA, Norval M, Crawford LV, et al. Lymphoproliferative response to fusion proteins of human papillomavirus in patients with cervical intraepithelial neoplasia. Epidemiol Infect 1989; 103: 625–32PubMedCrossRefGoogle Scholar
  94. 94.
    Strang G, Hickling JK, McIndoe GAJ, et al. Human T-cell responses to human papillomavirus type 16 L1 and E6: identification of T-cell determinants, HLA-DR restriction and virus type specificity. J Gen Virol 1990; 71: 423–31PubMedCrossRefGoogle Scholar
  95. 95.
    Davies DH, Hill M, Rothbard JB, et al. Detection of murine T-helper cell determinants on the major capsid protein of human papillomavirus type 16. J Gen Virol 1990; 71: 2691–8PubMedCrossRefGoogle Scholar
  96. 96.
    Jones PD, Tha-Hla R, Morein B, et al. Cellular immune responses in the murine lung to local immunization with influenza A virus glycoproteins in micelles and immunostimulatory complexes (ISCOMS). Scand J Immunol 1988; 271: 645–52CrossRefGoogle Scholar
  97. 97.
    Eldridge JH, Gilley RM, Staas JK, et al. Biodegradable microspheres: vaccine delivery system for oral immunization. Curr Top Microbiol Immunol 1989; 146: 59–66PubMedCrossRefGoogle Scholar
  98. 98.
    Moldoveanu Z, Staas JK, Gilley RM, et al. Immune responses to influenza virus in orally and systemically immunized mice. Curr Top Microbiol Immunol 1989; 146: 91–8PubMedCrossRefGoogle Scholar
  99. 99.
    Klein J. Immunology. Oxford: Blackwell, 1990: 346–50Google Scholar
  100. 100.
    McGhee JR, Mesteeky J, Dertzbaugh MT, et al. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine 1992; 10: 75–88PubMedCrossRefGoogle Scholar
  101. 101.
    Lewis DJM, Novotny P, Dougan G, et al. The early cellular and humoral immune response to primary and booster oral immunization with cholera toxin B subunit. Eur J Immunol 1991; 21: 2087–94PubMedCrossRefGoogle Scholar
  102. 102.
    Jenkins O, Cason J, Burke KL, et al. An antigenic chimera of poliovirus induces antibodies against human papillomavirus type 16. J Virol 1990; 64: 1201–6PubMedGoogle Scholar
  103. 103.
    Chatfield SN, Charles IG, Makoff AJ, et al. Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single dose oral tetanus vaccine. Biotechnology 1992; 10: 888–92PubMedCrossRefGoogle Scholar
  104. 104.
    Stover CK, de la Cruz VF, Fuerst TR, et al. New use of BCG for recombinant vaccines. Nature 1991; 351: 456–60PubMedCrossRefGoogle Scholar
  105. 105.
    Aldovini A, Young RA. Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines. Nature 1991; 351: 479–82PubMedCrossRefGoogle Scholar
  106. 106.
    Zhou J, Sun X-Y, Stenzel DJ, et al. Expression of vaccinia recombinant HPV-16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 1991; 185: 251–7PubMedCrossRefGoogle Scholar
  107. 107.
    Brochier B, Kiery MP, Costy F, et al. Large scale eradication of rabies using a vaccinia-rabies vaccine. Nature 1987; 326: 249–50CrossRefGoogle Scholar
  108. 108.
    Zagury D, Leonard R, Fouchard M, et al. Immmunization against AIDS in humans. Nature 1987; 326: 249–50PubMedCrossRefGoogle Scholar
  109. 109.
    Zagury D, Bernard J, Cheynier R, et al. A group specific anamnestic immune reaction against HIV-1 induced by a candidate vaccine against AIDS. Nature 1988; 332: 728–31PubMedCrossRefGoogle Scholar
  110. 110.
    Smith GL. Vaccinia: virus, vector and vaccine. In: Dimmock NJ, Griffiths PD, Madely CR, editors. Control of virus diseases. Cambridge: Cambridge University Press, 1990: 77–122Google Scholar
  111. 111.
    Tartaglia J, Perkus ME, Taylor J, et al. NYVAC: a highly attenuated strain of vaccinia virus. Virology 1992; 188: 217–32PubMedCrossRefGoogle Scholar
  112. 112.
    Canarypox virus as a vaccine vector [editorial]. Lancet 1992; 1: 1448–9Google Scholar
  113. 113.
    Culliton BJ. Daniel Zagury cleared of misconduct charges: Nature reports. Nature 1992; 355: 286PubMedGoogle Scholar
  114. 114.
    Icenogle JP, Sathya P, Miller DL, et al. Nucleotide and amino acid sequence variation in the L1 and E7 open reading frames of human papillomavirus type 6 and 16. Virol 1991; 184: 101–7CrossRefGoogle Scholar
  115. 115.
    Ho L, Chan S-Y, Burk RD, et al. The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient populations. J Virol 1993; 67: 6413–23PubMedGoogle Scholar
  116. 116.
    Stoler MH, Rhodes CR, Whitbeck A, et al. Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Human Pathol 1992; 23: 117–27CrossRefGoogle Scholar
  117. 117.
    Steele JC, Stankovic T, Gallimore PH. Production and characterization of human proliferative T-cell clones specific for HPV-1 E4 protein. J Virol 1992; 67: 2799–806Google Scholar
  118. 118.
    Lathe R, Kieny MP, Gerlinger P, et al. Tumor prevention and rejection with recombinant vaccinia. Nature 1987; 326: 787–880CrossRefGoogle Scholar
  119. 119.
    Zhou J, McIndoe A, Davies H, et al. The induction of cytotoxic T-lymphocyte precursor cells by recombinant vaccinia virus expressing human papillomavirus type 16 L1. Virology 1991; 181: 203–10PubMedCrossRefGoogle Scholar
  120. 120.
    Chen L, Thomas EK, Hu S-L, et al. Human papillomavirus type 16 nucleoprotein E7 is a tumor rejection antigen. Proc Natl Acad Sci USA 1991; 88: 110–4PubMedCrossRefGoogle Scholar
  121. 121.
    Meneguzzi G, Cerni C, Kieny MP, et al. Immunization against human papillomavirus type 16 tumor cells with recombinant vaccinia virus expressing E6 and E7. Virology 1991; 181: 62–9PubMedCrossRefGoogle Scholar
  122. 122.
    Connor ME, Stern PL. Loss of MHC class-I expression in cervical carcinomas. Int J Cancer 1990; 46: 1029–34PubMedCrossRefGoogle Scholar
  123. 123.
    Woodworth CD, Simpson S. Comparative lymphokine secretion by cultured normal cervical keratinocytes, papillomavirus immortalized and cervical carcinoma cell lines. Am J Pathol 1993; 142: 1544–55PubMedGoogle Scholar
  124. 124.
    Jochmus I, Durst M, Reid R, et al. MHC and human papillomavirus type 16 E7 expression in high grade vulvar lesions. Human Pathol 1993; 24: 519–24CrossRefGoogle Scholar
  125. 125.
    Thomas HC. Management of chronic hepatitis virus infection. In: Dimmock NJ, Griffiths PD, Madeley CR, editors. Control of virus diseases. Cambridge: Cambridge University Press, 1990: 243–59Google Scholar
  126. 126.
    Yasumoto S, Burkhardt AL, Doniger J, et al. Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells. J Virol 1986; 57: 572–7PubMedGoogle Scholar
  127. 127.
    Crook T, Storey A, Almond N, et al. Human papillomavirus type 16 co-operation with activated ras and fos oncogenes in the hormone-dependent transformation of primary mouse cells. Proc Natl Acad Sci USA 1988; 85: 8820–4PubMedCrossRefGoogle Scholar
  128. 128.
    Crook T, Tidy JA, Vousden KH. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and transactivation. Cell 1991; 67: 547–56PubMedCrossRefGoogle Scholar
  129. 129.
    Edmonds C, Vousden KH. A point mutation analysis of human papillomavirus type 16 protein. J Virol 1989; 63: 2650–6PubMedGoogle Scholar
  130. 130.
    Barbosa MS, Edmunds C, Fisher C, et al. The region of the HPV E7 oncoprotein homologous to adenovirus E1a and SV40 large T antigen contains separate domains for the Rb binding and casein kinase II phosphorylation. EMBO J 1990; 9: 153–60PubMedGoogle Scholar
  131. 131.
    Roitt I, Brostoff J, Male D. Immunology. London: Churchill Livingstone, 1985Google Scholar
  132. 132.
    Tindle RW, Fernando GJ, Sterling JC, et al. A ‘public’ T-helper epitope of the E7 transforming protein of human papillomavirus 16 provides cognate help for several E7 B-cell epitopes from cervical cancer-associated human papillomavirus genotypes. Proc Natl Acad Sci USA 1991; 88: 5887–91PubMedCrossRefGoogle Scholar
  133. 133.
    Frazer IH, Tindle RW. Cell-mediated immunity to papillomaviruses. Papillomavirus Rep 1992; 3: 53–8Google Scholar
  134. 134.
    Takahashi H, Takeshita T, Moein B, et al. Induction of CD8+ cytotoxic T-cells by immunization with purified HIV-1 envelope protein in ISCOMs. Nature 1990; 344: 873–5PubMedCrossRefGoogle Scholar
  135. 135.
    Schulz M, Zinkernagel RM, Hengartner H. Peptide-induced antiviral protection by cytotoxic T-cells. Proc Natl Acad Sci USA 1991; 88: 991–3PubMedCrossRefGoogle Scholar
  136. 136.
    Randall RE, Souberbielle BE. Presentation of virus antigens for the induction of protective immunity. In: Dimmock NJ, Griffiths PD, Madely CR, editors. Control of virus diseases. Cambridge: Cambridge University Press, 1990: 21–51Google Scholar
  137. 137.
    Comerford SA, McCance DJ, Dougan G, et al. Identification of T- and B-cell epitopes of the E7 protein of human papillomavirus type 16. J Virol 1991; 65: 4681–90PubMedGoogle Scholar
  138. 138.
    Shepherd PS, Tran TTT, Rowe AJ, et al. T-cell responses to the human papillomavirus type 16 E7 protein in mice of different haplotypes. J Gen Virol 1992; 73: 1269–74PubMedCrossRefGoogle Scholar
  139. 139.
    Hone DM, Harris AM, Chatfield S, et al. Construction of genetically defined double aro mutants of Salmonella typhi. Vaccine 1991; 9: 810–6PubMedCrossRefGoogle Scholar
  140. 140.
    Franklin HT, Grossman RA, Bartelloni PJ, et al. Immunization with live type 7 and 4 adenovirus vaccines. J Infect Dis 1971; 124: 148–54CrossRefGoogle Scholar
  141. 141.
    Crawford L. Prospects for cervical cancer vaccines. Cancer Surv 1993; 16: 215–29PubMedGoogle Scholar

Copyright information

© Adis International Limited 1994

Authors and Affiliations

  • John Cason
    • 1
  1. 1.The Richard Dimbleby Laboratory of Cancer Virology, United Medical and Dental Schools of Guys and St Thomas’The Rayne Institute, St Thomas’ CampusLondonEngland

Personalised recommendations