Drug Investigation

, Volume 5, Issue 1, pp 11–18 | Cite as

Effects of Ximoprofen and Acetylsalicylic Acid on Human Articular Chondrocytes in 3-Dimensional Culture

  • C. Bassleer
  • Y. Henrotin
  • P. Franchimont
Original Research Article


Different pharmacological concentrations of 2 nonsteroidal anti-inflammatory drugs (NSAIDs), acetylsalicylic acid (ASA) and ximoprofen (XP), were tested on human chondrocytes cultivated in clusters. DNA synthesis, measured by [3H]thymidine uptake into DNA, was depressed by ASA at concentrations typical of those found in synovial fluid and plasma after the administration of a single oral dose (500mg). Similarly, proteoglycans, assayed by a specific radioimmunoassay, were depressed in culture medium, whereas type II collagen was not modified. In contrast, XP did not affect these chondroformative processes in chondrocytes. Both NSAIDs were potent inhibitors of prostaglandin E2 (PGE2) synthesis, XP being more efficient than ASA. These experiments demonstrated that although XP inhibits PGE2 synthesis, it does not depress chondroformative parameters in human cartilage in vitro.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bassleer C, Gysen P, Bassleer R, Franchimont P. Effects of peptidic glycosaminoglycans complex on human chondrocytes cultivated in three dimensions. Biochemical Pharmacology 37: 1939–1945, 1988PubMedCrossRefGoogle Scholar
  2. Bassleer C, Gysen P, Foidart JM, Bassleer R, Franchimont P. Human chondrocytes in tridimensional culture. In vitro Cellular and Developmental Biology 22: 113–119, 1986PubMedCrossRefGoogle Scholar
  3. Bassleer C, Henrotin Y, Franchimont P. Effets de l’etodolac sur le métabolisme des chondrocytes humains cultivés en agrégats. In Gaucher & Netter (Eds) Actualités en Physiopathologie et pharmacologie articulaires, pp. 239–240, Masson, 1989Google Scholar
  4. Brandt KD. Effects of non steroidal antiinflammatory drugs on proteoglycan metabolism in vitro and in vivo. American Journal of Medicine 83: 29–35, 1987PubMedCrossRefGoogle Scholar
  5. Brandt KD. Treatment of osteoarthritis. In McCarty (Ed.) Arthritis and allied conditions, pp. 1631–1641, Lea and Febiger, Philadelphia, 1988Google Scholar
  6. De Vries BJ, Van Den Berg WB, Van De Putte LB. Salicylate induced depletion of endogenous inorganic sulfate. Arthritis and Rheumatism 28: 922–929, 1985PubMedCrossRefGoogle Scholar
  7. Fontagne J, Loizeau M, Adolphe M, Lechat P. Effect of indomethacin on collagen biosynthesis by rabbit articular chondrocytes in monolayer culture. International Journal of Tissue Reactions 6: 233–241, 1984PubMedGoogle Scholar
  8. Franchimont P, Bassleer C. New diagnostic tools and methodological approaches: an outlook to the future. Scandinavian Journal of Rheumatology 80 (Suppl.): 29–31, 1989PubMedCrossRefGoogle Scholar
  9. Franchimont P, Bassleer C, Henrotin Y, Gysen P, Bassleer R. Effects of human and salmon calcitonin on human articular chondrocytes cultivated in clusters. Journal of Clinical Endocrinology and Metabolism 69: 259–266, 1989PubMedCrossRefGoogle Scholar
  10. Fujii K, Tajiri K, Kajiwara T, Tanaka T, Murota K. Effects of NSAID on collagen and proteoglycan synthesis of cultured chondrocytes. Journal of Rheumatology 16: 19–28, 1989Google Scholar
  11. Gysen P, Franchimont P. Radioimmunoassay of proteoglycans. Journal of Immunoassay 5: 221–243, 1984PubMedCrossRefGoogle Scholar
  12. Henrotin Y, Bassleer C, Nusgens B, Franchimont P. Radioimmunoassay for human type II collagen. Journal of Immunoassay 11: 555–579, 1990PubMedCrossRefGoogle Scholar
  13. Herbage D, Bouillet J, Bernengo JC. Biochemical and physico-chemical characterization of pepsin-solubilized type II collagen from bovine articular cartilage. Biochemistry Journal 161: 303–312, 1977Google Scholar
  14. Hucker HB, Stauffer SC, White SD, Rhodes RE, Arisoa BH, et al. Physiologic disposition and metabolic fate of a new antiinflammatory agent, cis-5-fluoro-2-methyl-l-methylsulfin benzylidenyl-indende-3-acetate acid in the rat, dog, rhesus monkey and man. Drug Metabolism and Disposition 1: 721–736, 1973PubMedGoogle Scholar
  15. Kirkpatrick C, Mohr W, Wildfeuer A, Haferkamp O. Influence of non steroidal antiinflammatory agents on lapine articular chondrocytes growth in vitro. Rheumatology 42: 58–65, 1983Google Scholar
  16. Lequesne M. Arthrose de la hanche et du genou. Critères de diagnostic. Indices de la douleur, de la fonction et du résultat thérapeutique. In Peyron (Ed.) Epidemiology of osteoarthritis, Geigy, Paris, France, 1984Google Scholar
  17. Labarca C, Paigen K. A simple, rapid and sensitive DNA assay procedure. Analytical Biochemistry 102: 344–352, 1980PubMedCrossRefGoogle Scholar
  18. Levy G. Pharmacokinetics of salicylate in man. Drug Metabolism Reviews 9: 3–19, 1979PubMedCrossRefGoogle Scholar
  19. Mitrovic D, McCall E, Dray F. The in vitro production of prostanoids by cultured bovine articular chondrocytes. Prostaglandins 23: 17–28, 1982PubMedCrossRefGoogle Scholar
  20. Mitrovic D, McCall E, Front D, Aprice F, Darmon N, et al. Antiinflammatory drug, prostanoids and proteoglycan production by cultured bovine articular chondrocytes. Prostaglandins 28: 417–434, 1984PubMedCrossRefGoogle Scholar
  21. Oegema TR, Hascall VC, Dziewatkowski DD. Isolation and characterization of proteoglycans from the Swarm rat chondrosarcoma. Journal of Biological Chemistry 250: 6151–6159, 1975PubMedGoogle Scholar
  22. Palmoski MJ, Brandt KD. Effect of calcipenia on proteoglycan metabolism and aggregation in normal articular cartilage in vitro. Biochemical Journal 182: 399–406, 1979PubMedGoogle Scholar
  23. Palmoski MJ, Brandt KD. Effect of salicylate on proteoglycan metabolism in normal canine articular cartilage in vitro. Arthritis and Rheumatism 22: 746–754, 1979PubMedCrossRefGoogle Scholar
  24. Palmoski MJ, Brandt KD. Effects of some non steroidal antiinflammatory drugs on proteoglycan metabolism and organization in canine articular cartilage. Arthritis and Rheumatism 23: 1010–1020, 1980PubMedCrossRefGoogle Scholar
  25. Palmoski MJ, Brandt KD. Relationship between matrix PG content and the effects of salicylate and indomethacin on articular cartilage. Arthritis and Rheumatism 26: 528–531, 1983PubMedCrossRefGoogle Scholar
  26. Palmoski MJ, Brandt KD. Effects of salicylate and indomethacin on GAG and PGE2 synthesis in intact canine knee cartilage in vivo. Arthritis and Rheumatism 27: 398–403, 1984PubMedCrossRefGoogle Scholar
  27. Palmoski MJ, Brandt KD. Proteoglycan depletion, rather than fibrillation determines the effects of salicylate and indomethacin on osteoarthritic cartilage. Arthritis and Rheumatism 28: 548–553, 1985PubMedCrossRefGoogle Scholar
  28. Rubin A, Warrick P, Woden RL, Chernish SM, Ridolfo AS, et al. Physiological disposition of fenoprofen in man. III. Metabolism and protein binding of fenoprofen. Journal of Pharmacology and Experimental Therapeutics 183: 449–457, 1972PubMedGoogle Scholar
  29. Serteyn D, Deby-Dupont G, Pincemail J, Mottart E, Philippart C, et al. Equine post-anaesthesic myositis: thromboxane, prostacyclin and prostaglandin E2 production. Veterinary Research Communications 12: 219–226, 1988PubMedCrossRefGoogle Scholar
  30. Taylor IW, Chasseaud LF. Determination of ximoprofen in human plasma by gas chromatography. Journal of Chromatography 37: 1939–1945, 1988Google Scholar
  31. Zini R, D’Athis P, Baree J, Tillement JP. Binding of indomethacin to human serum albumin: its non displacement by various agents, influence of free fatty acids and the unexpected effect of indomethacin on warfarin binding. Biochemical Pharmacology 28: 2661–2665, 1979PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1993

Authors and Affiliations

  • C. Bassleer
    • 1
  • Y. Henrotin
    • 1
  • P. Franchimont
    • 1
  1. 1.Department of Rheumatology, Laboratory of Radioimmunoassay, Pathology InstituteUniversity of LiègeSart-Tilman par Liège 1Belgium

Personalised recommendations