Clinical Immunotherapeutics

, Volume 1, Issue 5, pp 327–347 | Cite as

Immunological Aspects of Cardiovascular Diseases

Implications for Treatment
  • Dennis K. Ledford
Practical Therapeutics


The immunological cardiovascular diseases are a very diverse group of clinical entities that generally are of either unknown aetiology or of unproven pathophysiology. Most of the conditions with a proven, or strongly suspected, aetiology are caused by infections, with the best examples being acute rheumatic fever and Lyme disease. However, even with these diseases, the primary pathophysiological mechanisms have not been irrefutably established. In addition to the importance of infectious agents in the immunological cardiovascular diseases, other factors have been identified that are associated with or modify these diseases. These factors include age, genetic background and coexisting inflammatory diseases.

The proposed immunological mechanisms important in the immunological cardiovascular diseases include: (a) immune mimicry, in which antigens of an infectious agent crossreact with self antigens; (b) modification of self antigens by infections or other inflammatory processes; (c) introduction of self antigens to the immune system following a traumatic or inflammatory event; and (d) dysregulation of an autoimmune response. The immunological effector mechanisms include: (a) passive deposition of immunoglobulin or immune complexes in cardiovascular tissues with resulting inflammation; (b) autoantibodies that damage the cardiovascular system directly or indirectly; and (c) cell-mediated immune responses to antigens within the cardiovascular system.

The clinical diagnosis of the immunological cardiovascular diseases is facilitated by clinical criteria and by selective laboratory tests in certain diseases. Laboratory tests, other than histology, do not usually provide definitive answers but serve to confirm suspected diagnoses. The vague, often systemic, symptoms associated with many of the disorders add to the clinical confusion of diagnosis.

Despite the lack of clearcut aetiologies, the classification of these diseases does facilitate therapeutic decision making. This is particularly important since the prognosis of some of these conditions, such as acute rheumatic fever, Lyme disease, Wegener’s granulomatosis, systemic necrotising vasculitis and temporal arteritis, is significantly improved by treatment. Classification schemes for vasculitis remain primarily descriptive, but are useful for dividing the entities into categories with similar response to treatment. Significant progress and improvement in the treatment of the immunological cardiovascular disorders await better definition of the aetiologies and primary pathophysiological mechanisms involved.


Vasculitis Myocarditis Kawasaki Disease Lyme Disease Giant Cell Arteritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parrillo JE, Fauci AS. Immunological diseases of the cardiovascular system. In: Lockey RF, Bukantz SC, editors. Principles of Immunology and Allergy. Philadelphia: Saunders, 1987: 271–87Google Scholar
  2. 2.
    Shimizu Y, Newman W, Tanaka Y et al. Lymphocyte interactions with endothelial cells. Immunol Today 1992; 13: 106–12PubMedCrossRefGoogle Scholar
  3. 3.
    Zimmerman GA, Prescott SM, McIntyre A. Endothelial cell interactions with granulocytes: tethering and signalling molecules. Immunol Today 1992; 113: 93–9CrossRefGoogle Scholar
  4. 4.
    Markowitz M, Kaplan EL. Reappearance of rheumatic fever. Adv Pediatr 1989; 361: 39–65Google Scholar
  5. 5.
    Stollerman GH. Rheumatic fever. In: Kelley WN, Harris ED, Ruddy S, et al., editors. Textbook of Rheumatology. 2nd ed. Philadelphia: Saunders, 1985: 1277–93Google Scholar
  6. 6.
    Husby G, Van de Rijn I, Zabriskie JB, et al. Antibodies reacting with cytoplasm of subthalamic and caudate nuclei neurons in chorea and acute rheumatic fever. J Exp Med 1976; 144: 1094–110PubMedCrossRefGoogle Scholar
  7. 7.
    Abe J, Forrester J, Nakahara T, et al. Selective stimulation of human T-cells with streptococcal erythrogenic toxins A and B. J Immunol 1991; 146: 3747–50PubMedGoogle Scholar
  8. 8.
    Patarroyo ME, Winchester RJ, Vejerano A, et al. Association of a B-cell alloantigen with susceptibility to rheumatic fever. Nature 1979; 278: 173–4PubMedCrossRefGoogle Scholar
  9. 9.
    Jones criteria (revised) for guidance in the diagnosis of rheumatic fever. Circulation 1965; 32: 664–8Google Scholar
  10. 10.
    Barnert AL, Jerry EE, Persellin RH. Acute rheumatic fever in adults. JAMA 1975; 232: 925–8PubMedCrossRefGoogle Scholar
  11. 11.
    Perry BC. Erythema marginatum. Arch Dis Child 1937; 12: 233–8PubMedCrossRefGoogle Scholar
  12. 12.
    Beachey EH, Stollerman GH, Johnson RH, et al. Human immune response to immunization with a structurally defined polypeptide fragment of streptococcal M protein. J Exp Med 1979; 150: 862–77PubMedCrossRefGoogle Scholar
  13. 13.
    Bisno AL. Rheumatic fever. In: Kelly WN, Harris ED, Ruddy S, et al., editors. Textbook of rheumatology. 4th ed. Philadelphia: Saunders, 1993: 1209–23Google Scholar
  14. 14.
    Bisno AL. The resurgence of acute rheumatic fever in the U.S. Annu Rev Med 1990; 41: 391–2CrossRefGoogle Scholar
  15. 15.
    Vasiljevic JD, Kanjuh V, Seferovic P. The incidence of myocarditis in endomyocardial biopsy samples from patients with congestive heart failure. Am Heart J 1990; 120: 1370–7PubMedCrossRefGoogle Scholar
  16. 16.
    Lie JT. Myocarditis and endomyocardial biopsy in unexplained heart failure: a diagnosis in search of a disease. Ann Intern Med 1988; 109: 525–8PubMedGoogle Scholar
  17. 17.
    Bowles NE, Rose ML, Taylor P, et al. End-stage dilated cardiomyopathy. Persistence of enterovirus RNA in myocardium at cardiac transplantation and lack of immune response. Circulation 1989; 80: 1128–36PubMedCrossRefGoogle Scholar
  18. 18.
    Hypiä T. Etiological diagnosis of viral heart disease. Scand J Infect Dis 1993; 88 (Suppl.): 25–31Google Scholar
  19. 19.
    McManus BM, Kendolph R. Evolving concepts of cause, consequence and control in myocarditis. Curr Opin Cardiol 1991; 6: 418–27CrossRefGoogle Scholar
  20. 20.
    Woodruff JF. Viral myocarditis: a review. Am J Pathol 1980; 101: 427–80Google Scholar
  21. 21.
    Maisch B, Trostel-Soeder R, Stechmesser F, et al. Diagnostic relevance of humoral and cell-mediated immune reactions in patients with acute viral myocarditis. Clin Exp Immunol 1982; 48: 533–45PubMedGoogle Scholar
  22. 22.
    Hufnagel G, Maisch B. Expression of MHC class I and II antigens and the IL-2 receptor in rejection, myocarditis and dilated cardiomyopathy. Eur Heart J 1991; 12: 137–40PubMedCrossRefGoogle Scholar
  23. 23.
    Kühl U, Daun B, Seeberg B, et al. Dilated cardiomyopathy — a chronic myocarditis? Immunohistological characterization of lymphocytic infiltrates. Herz 1992; 17: 97–106PubMedGoogle Scholar
  24. 24.
    Hergstenberg C, Rose ML, Olsen MCJ, et al. Immune resonse to the endothelium in myocarditis, dilated cardiomyopathy and rejection after heart transplantation. Eur Heart J 1991; 12: 144–6CrossRefGoogle Scholar
  25. 25.
    Sanderson JE, Koech D, Iha D, et al. T-lymphocyte subsets in idiopathic dilated cardiomyopathy. Am J Cardiol 1985; 55: 755–8PubMedCrossRefGoogle Scholar
  26. 26.
    Maze SS, Adolph RJ. Myocarditis: unresolved issues in diagnosis and treatment. Clin Cardiol 1990; 13: 69–79PubMedCrossRefGoogle Scholar
  27. 27.
    Maisch B, Herzum M, Schonian U. Immunomodulating factors and immunosuppressive drugs in the therapy of myocarditis. Scand J Inf Dis 1993; 88(S): 149–62Google Scholar
  28. 28.
    Rothfield N. Clinical features of systemic lupus erythematosus. In: Kelley WN, Harris ED, Ruddy S, et al., editors. Textbook of Rheumatology. 2nd ed. Philadelphia: Saunders, 1985: 1087–8Google Scholar
  29. 29.
    Hochberg MC, Dorsch CA, Feinglass EJ, et al. Survivorship in SLE: effect of antibody to extractable nuclear antigen. Arth Rheum 1981; 24: 54–9CrossRefGoogle Scholar
  30. 30.
    Lockshin MD, Bonfa E, Elkon K, Druzin ML. Neonatal lupus risk to newborns of mothers with systemic lupus erythematosus. Arth Rheum 1988; 31: 697–701CrossRefGoogle Scholar
  31. 31.
    Straaton KV, Chatham WW, Reveille JD, et al. Clinically significant valvular heart disease in systemic lupus erythematosus. Am J Med 1988; 85: 645PubMedCrossRefGoogle Scholar
  32. 32.
    Chartash EK, Lang DM, Paget SA, et al. Aortic insufficiency and mitral regurgitation in patients with systemic lupus erythematosus and the antiphospholipid syndrome. Am J Med 1989; 86: 467–14CrossRefGoogle Scholar
  33. 33.
    Lockshin MD. Which patients with antiphospholipid antibody should be treated and how? Rheum Dis Clin N Am 1993; 19: 235–47Google Scholar
  34. 34.
    Lockshin MD. Antiphospholipid antibody and antiphospholipid syndrome. Curr Opin Rheumatol 1991; 3: 797–802PubMedCrossRefGoogle Scholar
  35. 35.
    Lockshim MD, Druzin ML, Qamar T. Prednisone does not prevent recurrent fetal death in women with antiphospholipid antibody. Am J Obstet Gynecol 1989; 160: 439–43Google Scholar
  36. 36.
    Qamar T, Levy RA, Sammaritano L. Characteristics of high-titer IgG antiphospholipid antibody in systemic lupus erythematosus patients with and without fetal death. Arth Rheum 1990; 33: 501–4CrossRefGoogle Scholar
  37. 37.
    Steere AC. Lyme disease. N Engl J Med 1989; 321: 586–96PubMedCrossRefGoogle Scholar
  38. 38.
    Steere AC, Batsford WP, Weinberg M, et al. Lyme carditis: cardiac abnormalities of Lyme disease. Ann Intern Med 1980; 98: 8Google Scholar
  39. 39.
    McAlister HF, Klementowica PT, Andrews C, et al. Lyme carditis: an important cause of reversible heart block. Ann Intern Med 1989; 110: 339PubMedGoogle Scholar
  40. 40.
    Rahn DW, Malawista SE. Lyme disease: recommendations for diagnosis arid treatment. Ann Intern Med 1991; 114: 472–87PubMedGoogle Scholar
  41. 41.
    Cupps TR, Fauci AS. The vasculitides. In: Smith LH, editor. Major problems in internal medicine. Philadelphia: Saunders, 1981; 21: 1–211Google Scholar
  42. 42.
    Fauci AS, Haynes B, Katz P. The spectrum of vasculitis: clinical, pathologic, immunologic and therapeutic considerations. Ann Intern Med 1978; 89: 660–76PubMedGoogle Scholar
  43. 43.
    Sergent JS, Lockshin MD, Christin CL, et al. Vasculitis with hepatitis B antigenemia: long-term observations in nine patients. Medicine 1976; 55: 1–18PubMedCrossRefGoogle Scholar
  44. 44.
    Kohler PF, Claman HV. Systemic vasculitis. In: Franklin EC, editor. Clinical immunology updates: reviews for physicians. New York: Elsevier, 1981: 293–319Google Scholar
  45. 45.
    Brasile L, Kremer JM, Clarke JL, Cerilli J. Identification of an autoantibody to vascular endothelial cell-specific antigens in patients with systemic vasculitis. Am J Med 1989; 87: 74–80PubMedCrossRefGoogle Scholar
  46. 46.
    Frampton G, Jayne DR, Perry GJ, et al. Autoantibodies to endothelial cells and neutrophil cytoplasmic antigens in systemic vasculitis. Clin Exp Immunol 1990; 82: 227–32PubMedCrossRefGoogle Scholar
  47. 47.
    Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest 1991; 64: 5–15PubMedGoogle Scholar
  48. 48.
    Bloch DA, Micel BA, Hunder GG, et al. The American College of Rheumatology 1990 criteria for the classification of vasculitis: patients and methods. Arthritis Rheum 1990; 33: 1068–73PubMedCrossRefGoogle Scholar
  49. 49.
    Fries JF, Hunder GG, Bloch PA et al. The American College of Rheumatology 1990 criteria for classification of vasculitis: summary. Arthritis Rheum 1990; 33: 1065–7PubMedGoogle Scholar
  50. 50.
    Guillevin L, Le This Huong Du, Godeau P, et al. Clinical findings and prognosis of polyarteritis nodosa and Churg-Strauss angiitis; a study in 165 patients. Br J Rheumatol 1988; 27: 258–64PubMedCrossRefGoogle Scholar
  51. 51.
    Masi AT, Hunder GG, Lie JT, et al. The American College of Rheumatology 1990 criteria for the classification of Churg-Strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum 1990; 33: 1094–100PubMedCrossRefGoogle Scholar
  52. 52.
    Chaauhan C, Scott DGI, Neuberger J, et al. Churg-Strauss vasculitis and ascaris infection. Ann Rheum Dis 1990; 49: 320–2CrossRefGoogle Scholar
  53. 53.
    Leavitt RY, Fauci AS. Polyangiitis overlap syndrome: classification and prospective clinical experience. Am J Med 1986; 81: 79–84PubMedCrossRefGoogle Scholar
  54. 54.
    Dahlberg PJ, Lockhart JM, Overholt EL. Diagnostic studies for systemic necrotizing vasculitis. Arch Intern Med 1989; 149: 161–5PubMedCrossRefGoogle Scholar
  55. 55.
    Fauci AS, Katz P, Haynes BF, et al. Cyclophosphamide therapy of severe systemic necrotizing vasculitis. N Engl J Med 1979; 301: 235–8PubMedCrossRefGoogle Scholar
  56. 56.
    Casato M, Lagana B, Giorgi A, et al. Clinical effects of interferon in patients with idiopathic mixed cryoglobulinemia. Eur J Hematol 1990; 52S: 7–8Google Scholar
  57. 57.
    Fauci AS, Haynes BF, Katz P, et al. Wegener’s granulomatosis. Ann Intern Med 1983; 98: 76–85PubMedGoogle Scholar
  58. 58.
    Ferraro G, Meroni PL, Tincani A, et al. Anti-endothelial cell antibodies in patients with Wegener’s granulomatosis and micropolyarteritis. Clin Exp Immunol 1990; 79: 47–53PubMedCrossRefGoogle Scholar
  59. 59.
    Falk RJ, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 1988; 318: 1651–7PubMedCrossRefGoogle Scholar
  60. 60.
    Goldschmeding R, van der Schoot CE, ten Bokkel Huinink D, et al. Wegener’s granulomatosis autoantibodies identify a novel diisopropylfluorophosphate-binding protein in the lysosomes of normal human neutrophils. J Clin Invest. 1989; 84: 1577–87PubMedCrossRefGoogle Scholar
  61. 61.
    Nölle B, Specks U, Lüdemann J, et al. Anticytoplasmic autoantibodies: their immunodiagnostic value in Wegener’s granulomatosis. Ann Int Med 1989; 111: 28–40PubMedGoogle Scholar
  62. 62.
    Leavitt RY, Fauci AS, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Wegener’s granulomatosis. Arthritis Rheum 1990; 33: 1101–7PubMedCrossRefGoogle Scholar
  63. 63.
    Hoffman GS, Leavitt RY, Kerr GS, et al. The treatment of Wegener’s granulomatosis with glucocorticoids and methotrexate. Arthritis Rheum 1992; 35: 1322–9PubMedGoogle Scholar
  64. 64.
    Valeriano-Marcet J, Spiera H. Treatment of Wegener’s granulomatosis with sulfamethoxazole-trimethoprim. Arch Intern Med 1991; 151: 1649–52PubMedCrossRefGoogle Scholar
  65. 65.
    Rodgers H, Guthrie JA, Brownjohn AM, et al. Microscopic polyarteritis: clinical features and treatment. Postgrad Med J 1989; 65: 515–8PubMedCrossRefGoogle Scholar
  66. 66.
    Esnault VL, Ronda N, Jayne DR, et al. Association of ANCA isotype and affinity with disease expression. J Autoimmun 1993; 6: 197–205PubMedCrossRefGoogle Scholar
  67. 67.
    Jayne DR, Esnault VL, Lockwood CM. ANCA anti-idiotype antibodies and the treatment of systemic vasculitis with intravenous immunoglobulin. J Autoimmun 1993; 6: 207–19PubMedCrossRefGoogle Scholar
  68. 68.
    Huston KA, Hunder GG, Lie JT, et al. Temporal arteritis: a 25-year epidemiologic, clinical and pathologic study. Ann Intern Med 1978; 88: 162–7PubMedGoogle Scholar
  69. 69.
    Elling P, Olsson A, Elling H. CD8+ T-lymphocyte subset in giant cell arteritis and related disorders. J Rheumatol 1990; 17: 225–7PubMedGoogle Scholar
  70. 70.
    Hunder GG, Bloch DA, Michel BA, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990; 33: 1122–8PubMedCrossRefGoogle Scholar
  71. 71.
    Rosenfeld SI, Komorsky GS, Klingele TG, et al. Treatment of temporal arteritis with ocular involvement. Am J Med 1986; 80: 143PubMedCrossRefGoogle Scholar
  72. 72.
    Hall S, Barr W, Lie JJ, et al. Takayasu arteritis: a study of 32 American patients. Medicine (Baltimore) 1985; 64: 89–99Google Scholar
  73. 73.
    Naito S, Arakawa K, Saito S, et al. Takayasu’s disease: association with HLA-B5. Tissue Antigens 1978; 12: 143–5PubMedCrossRefGoogle Scholar
  74. 74.
    Isonisa I, Numano F, Maezawa J, et al. HLA-BW52 in Takayasu disease. Tissue Antigens 1978; 12: 246–8CrossRefGoogle Scholar
  75. 75.
    Numano F, Isonisa I, Maezawa J, et al. HLA antigens in Takayasu’s disease. Am Heart J 1979; 98: 153–4PubMedCrossRefGoogle Scholar
  76. 76.
    Volkman DJ, Mann DL, Fauci AS. Association between Takayasu’s arteritis and a B cell alloantigen in North America. N Engl J Med 1982; 306: 364–5CrossRefGoogle Scholar
  77. 77.
    Cupps TR, Fauci AS. The vasculitides. Philadelphia: Saunders, 1981Google Scholar
  78. 78.
    Lupi-Herrera E, Sanchez-Torres G, Marcushamer J, et al. Takayasu arteritis: clinical study of 107 cases. Am Heart J 1977; 93: 94PubMedCrossRefGoogle Scholar
  79. 79.
    Shelhamer JH, Volkman DJ, Parrillo JE, et al. Takayasu’s arteritis and its therapy. Ann Intern Med 1985; 103: 121–6PubMedGoogle Scholar
  80. 80.
    Ishikawa K. Survival and morbidity after diagnosis of occlusive thromboarthropathy (Takayasu’s disease). Am J Cardiol 1981; 47: 1026–32PubMedCrossRefGoogle Scholar
  81. 81.
    Grossman E, Morag B, Nussinovitch N, et al. Use of Captopril in Takayasu’s arteritis. Arch Int Med 1984; 144: 95CrossRefGoogle Scholar
  82. 82.
    Hricik DE, Browning PJ, Kopetman R, et al. Captopril-induced functional renal insufficiency in patients with bilateral renal artery stenosis or renal artery stenosis in a solitary kidney. N Engl J Med 1983; 708: 373CrossRefGoogle Scholar
  83. 83.
    Gibson LE. Cutaneous vasculitis: approach to diagnosis and systemic associations. Mayo Clin Proc 1990; 65: 221–9PubMedCrossRefGoogle Scholar
  84. 84.
    Gorevic PB, Kassab HYJ, Levo Y, et al. Mixed cryoglobulinemia: clinical aspects and long-term follow-up of 40 patients. Am J Med 1980; 69: 287PubMedCrossRefGoogle Scholar
  85. 85.
    Boon BW, Brand A, Bavinck J, et al. Severe leukocytoclastic vasculitis of the skin in a patient with mixed cryoglobulinemia treated with high-dose gammaglobulin intravenously. Arch Dermatol 1988; 124: 1550CrossRefGoogle Scholar
  86. 86.
    Melish ME, Hicks RV. Kawasaki syndrome: clinical features, pathophysiology, etiology, and therapy. J Rheumatol 1990; 17 (24 Suppl.): 2–10Google Scholar
  87. 87.
    Leung DY, Meissner HC, Fulton DR, et al. Toxic shock syndrome toxin-secreting Staphylococcus aureus in Kawasaki syndrome. Lancet 1993; 342: 1585–8CrossRefGoogle Scholar
  88. 88.
    Leung DY. Immunologic aspects of Kawasaki syndrome. J Rheumatol 1990; 17 (24-Suppl.): 15–8Google Scholar
  89. 89.
    Leung DY, Geha R, Newburger J. Two monokines, interleukin-1 and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome. J Exp Med 1986; 164: 1958–72PubMedCrossRefGoogle Scholar
  90. 90.
    Leung DY. The potential role of cytokine-mediated vascular endothelial activation in the pathogenesis of Kawasaki disease. Acta Paediatr Jpn 1991; 33: 739–44PubMedCrossRefGoogle Scholar
  91. 91.
    Newburger JW, Takahasi M, Beiser AS, et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl J Med 1991; 324: 1633PubMedCrossRefGoogle Scholar
  92. 92.
    Moore PM. Diagnosis and management of isolated angiitis of the central nervous system. Neurology 1989; 39: 167–73PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1994

Authors and Affiliations

  • Dennis K. Ledford
    • 1
  1. 1.Division of Allergy and Clinical Immunology, Department of Internal MedicineUniversity of South FloridaTampaUSA

Personalised recommendations