Skip to main content
Log in

Carbothermic Reduction Using Liquid Metal Solvents

  • Process
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The use of liquid metal solvents has broadened the application-potential of carbothermic reduction in the areas of ore reduction reactions and reactive separations. A properly chosen solvent permits pyrometallurgical reductions at temperatures far below those possible with processes that do not employ a solvent metal. Product contamination is inhibited as well. Further, solvated carbothermic reduction appears to consume substantially less energy than conventional electrochemical and metallothermic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Darling, Metallurgie, 64 (1961), pp. 7–13.

    Google Scholar 

  2. H.A. Wilhelm and O.N. Carlson, JOM, 16 (1964), p. 170.

    Google Scholar 

  3. P.T. Stroup, Trans. Metall. Soc. AIME, 230 (1964), pp. 356–371.

    Google Scholar 

  4. R.B. Pehlke, Unit Processes in Extractive Metallurgy, American Elsevier Publishing Co., NY (1973).

    Google Scholar 

  5. R.N. Anderson, Ph.D. Thesis, Stanford University, Stanford, CA (1970).

    Google Scholar 

  6. R.N. Anderson and N.A.D. Parlée, U.S. Patent 3,794,482 (1974).

    Google Scholar 

  7. R N. Anderson and N.A.D. Parlée, J. Vac. Sci. Tech., 13 (1976), pp. 526–529.

    Article  Google Scholar 

  8. N. Bakshani, Ph.D. Thesis, Stanford University, Stanford, CA (1977).

    Google Scholar 

  9. C.W. Graves, Ph.D. Thesis, University of Illinois, Urbana, IL (1978).

    Google Scholar 

  10. N. Bakshani, N.A.D. Parlée and R.N. Anderson, Ind. Res. Dev., 21 (1979), pp. 122–126.

    Google Scholar 

  11. O.H. Krikorian, Lawrence Livermore Laboratory Report, No. UCID-18262, (August, 1979).

    Google Scholar 

  12. CT. Lira, M.S. Thesis, University of Illinois, Urbana, IL (1984).

    Google Scholar 

  13. C.A. Eckert, R.B. Irwin and C.W. Graves, Ind. Eng. Chem. Proc. Des. Dev., 23 (1984), pp. 210–217.

    Article  Google Scholar 

  14. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser and K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Metals Park, OH (1973).

    Google Scholar 

  15. C.A. Eckert. R.B. Irwin and J.S. Smith, Met. Trans. B, 14B (1983), pp. 451–458.

    Article  Google Scholar 

  16. S.D. Kirkpatrick, Chem. Met. Eng., 48 (9) (1941), p. 91.

    Google Scholar 

  17. F.J. Hansgirg, Iron Age, 152 (18 November 1943), pp. 56–63.

  18. F.J. Hansgirg, Iron Age, 152 (25 November 1943), pp. 52–58.

  19. T.A. Dungan, Trans. Metall. Soc. AIME, 159 (1944), p. 308.

    Google Scholar 

  20. S.D. Kirkpatrick, Chem. Met. Eng., 51 (6) (1944), pp. 104–106 and pp. 128–131.

    Google Scholar 

  21. F.J. Hansgirg, U.S. Patent 2,437,815 (1948).

    Google Scholar 

  22. D.A. Elkins, P.L. Placek and K.C. Dean, U.S. Bureau of Mines, Report of Investigation 6946 (May, 1967).

    Google Scholar 

  23. Kirk-Othmer: Encyclopedia of Chemical Technology, Volume 14, Third Edition, John Wiley and Sons, NY (1981).

  24. W.S. Landis, Trans. Electrochem. Soc., 72 (1937), pp. 293–316.

    Article  Google Scholar 

  25. P.P. Zapponi and M.J. Spendlove, U.S. Bureau of Mines, Report of Investigation 4082 (June, 1947).

    Google Scholar 

  26. M.J. Spendlove, Voc. Met. Symp. oftheElectrothermics and Met. Div. of Electrochem. Soc., (October, 1954), pp. 192–213

    Google Scholar 

  27. H.S. Caldwell,Jr., M.J. Spendlove and H.W. St. Clair, U.S. Bureau of Mines, Report of Investigation 5703 (1960).

    Google Scholar 

  28. K.C. Dean, D.A. Elkins and S.J. Hussey, U.S. Bureau of Mines, Report of Investigation 6656 (1965).

    Google Scholar 

  29. J.M. Smith and H.C Van Ness, Introduction to Chemical Engineering Thermodynamics, Third Edition, McGraw-Hill Book Company, NY (1975).

    Google Scholar 

  30. W.P. Schambra, Trans. AIChE, 41 (1944), p. 35.

    Google Scholar 

  31. R.M. Hunter, Trans. Electrochem. Soc., 86 (1944), p. 21.

    Google Scholar 

  32. C.M. Shigley, Trans. Metall. Soc. AIME, 182 (1949), p. 59.

    Google Scholar 

  33. O.S. Roberts, Magnesium and Its Alloys, John Wiley and Sons, NY (1960).

    Google Scholar 

  34. E.F. Emley, Principles of Magnesium Technology, Pergamon Press, Oxford (1966).

    Google Scholar 

  35. D. Gilroy, “The Electrowinning of Metals,” Industrial Electrochemical Processes, ed. A.T. Kuhn, Elsevier, London (1971).

    Google Scholar 

  36. D.H. Killeffer, Chem. Eng. News, 20 (1942), p. 369.

    Article  Google Scholar 

  37. L.M. Pidgeon and W.A. Alexander, Trans. Metall. Soc. AIME, 159 (1944), p. 315.

    Google Scholar 

  38. L.M. Pidgeon, J.C. Mathes, N.E. Woldman, J.V. Winkler, and W.S. Loose, Magnesium, American Society for Metals, Cleveland, OH (1946), pp. 1–22.

    Google Scholar 

  39. L.M. Pidgeon and J.A. King, Disc. Faraday Soc., 4 (1948), p. 197.

    Article  Google Scholar 

  40. W.H. Gross, The Story of Magnesium, Techbook Series, First Edition, American Society for Metals, Metals Park, OH (1959).

    Google Scholar 

  41. Metals Statistics 1980, 71st Edition, American Metal Market, Fairchild Publications, NY (1980), p. 126.

  42. K. Grjotheim and J.B. See, Minerals Sci. Eng., 11 (1979), pp. 80–98.

    Google Scholar 

  43. A.D. Little, Inc., Argonne National Laboratory, Report No. ANL-OEPM 794 (December, 1979).

    Google Scholar 

  44. J.R. Todd, JOM, 33 (9) (1981), pp. 42–45.

    Google Scholar 

  45. K. Grjotheim and B. Welch, JOM, 33 (9) (1981), pp. 26–32

    Google Scholar 

  46. S. Spector, JOM, 33 (6) (1981), pp. 138–139.

    Google Scholar 

  47. E. Rudd and W. Darlington, J. Electrochem. Soc., 128 (1981), pp. 261C–262C

    Article  Google Scholar 

  48. J. Peacey and W. Davenport, JOM, 26 (7) (1974), pp. 25–28.

    Google Scholar 

  49. A. Russell, Met. Trans. B, 12B, (1981), pp. 203–215.

    Article  Google Scholar 

  50. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill Book Company, NY (1958).

    Google Scholar 

  51. R.P. Elliott, Constitution of Binary Alloys, First Supplement, McGraw-Hill Book Company, NY (1965).

    Google Scholar 

  52. F.A. Shunk, Constitution of Binary Alloys, Second Supplement, McGraw-Hill Book Company, NY (1969).

    Google Scholar 

  53. W.G. Moffatt, The Index to Binary Phase Collections, General Electric Company, Technology Marketing Operation, Schenectady, NY (1979).

    Google Scholar 

  54. W. Hoopes, U.S. Patent 673,364 (1901).

    Google Scholar 

  55. W. Hoopes, F.C Frary and J.D. Edwards, U.S. Patents 1,534,316, 1,534,317, and 1,534,318 (1925).

    Google Scholar 

  56. R.N. Anderson and N.A.D. Parlée, Met. Trans., 2 (1971), pp. 1599–1604.

    Google Scholar 

  57. R.N. Anderson and N.A.D. Parlée, Nucl. Technol., 13 (1972), pp. 297–300.

    Google Scholar 

  58. R.N. Anderson, N.A.D. Parlée and J.M. Gallagher, Nucl. Technol., 13 (1972). pp. 29–35.

    Google Scholar 

  59. T.G. Schicks, Ph.D. Thesis, Stanford University, Stanford, CA (1973).

    Google Scholar 

  60. A. Fuwa, R.N. Anderson and N.A.D. Parlée, High Temp. Sci., 5 (1973), pp. 165–175.

    Google Scholar 

  61. A. Fuwa, R.N. Anderson and N.A.D. Parlée, High Temp. Sci., 5 (1973), p. 325.

    Google Scholar 

  62. A. Fuwa, R.N. Anderson and N.A.D. Parlée, High Temp. Sci., 6 (1974), p. 259.

    Google Scholar 

  63. A. Fuwa, Ph.D. Thesis, Stanford University, Stanford, CA (1974).

    Google Scholar 

  64. T. Schicks, R.N. Anderson and N.A.D. Parlée, High Temp. Sci., 6 (1974), pp. 351–368.

    Google Scholar 

  65. A. Fuwa, R.N. Anderson and N.A.D. Parlée, High Temp. Sci., 7 (1975) p. 249.

    Google Scholar 

  66. R.R. Jones, Ind. Res., (May, 1976), pp. 55–58.

    Google Scholar 

  67. R.P. Deschner, M.S. Thesis, University of Illinois, Urbana, IL (1979).

    Google Scholar 

  68. R.N. Anderson, U.S. Patent 4,243,411 (1981).

    Google Scholar 

  69. W.J. Howell and C.A. Eckert, Accts. Chem. Res., 21 (1988), pp. 168–174.

    Article  Google Scholar 

Download references

Authors

Additional information

Wayne Howell received his M.S. in chemical engineering from the University of Illinois in 1986 and is currently working on his doctorate. He is also a member of TMS.

Charles Eckert received his Ph.D. in chemical engineering from the University of California, Berkeley. He is currently Alumni Professor of Chemical Engineering at the University of Illinois. Dr. Eckert is also a member of TMS

Robert Anderson received his Ph.D. in mineral engineering from Stanford University. He is currently a professor of materials engineering at San Jose State University. Dr. Anderson is also a member of TMS

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, W.J., Eckert, C.A. & Anderson, R.N. Carbothermic Reduction Using Liquid Metal Solvents. JOM 40, 21–23 (1988). https://doi.org/10.1007/BF03258144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03258144

Keywords

Navigation