Advertisement

JOM

, Volume 37, Issue 6, pp 63–71 | Cite as

Chemical Vapor Deposition of Metals for Integrated Circuit Applications

  • M. L. Green
  • R. A. Levy
Physical Metallurgy and Material Overview

Abstract

Chemical vapor deposition has been used to deposit films and purify metals since about the turn of the century. Whereas CVD technology was adopted very early by the integrated circuit industry for the deposition of semiconductor and insulator films, CVD metals applications in this industry are now only in their infancy. The advantages of CVD metals technology, i.e., confor-mal coverage, low temperature and radiation damage-free deposition, selectivity and high purity film formation are discussed here in the context of VLSI metallization requirements. CVD metals can now fulfill materials requirements that sputtering and evaporation, the traditional metal films deposition processes, cannot.

Keywords

Pyrolysis Thin Solid Film Selective Deposition Conformal Coverage Solid State Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    John L. Vossen and Werner Kern, eds., Thin Film Processes, Academic Press, New York, N.Y., 1978.Google Scholar
  2. 2.
    L.I. Maissel and R. Glang, eds., Handbook of Thin Film Technology, McGraw-Hill, New York, N.Y., 1970.Google Scholar
  3. 3.
    C.F. Powell, J.H. Oxley and J.M. Blocher, Jr., eds., Vapor Deposition, John Wiley & Sons, Inc. New York, N.Y., 1966, pp. 249–342.Google Scholar
  4. 4.
    R.A. Holzl, “Chemical Vapor Deposition Techniques,” in Techniques of Metals Research, Vol. 1, Part 3, R.F. Bunshah, ed., Interscience Publishers, New York, N.Y., 1968, pp. 1377–1405.Google Scholar
  5. 5.
    W.M. Feist, S.R. Steele and D.W. Readey, “The Preparation of Films by Chemical Vapor Deposition,” in Physics of Thin Films, Vol. 5, G. Hass and R.E. Thun, eds., Academic Press, New York, N.Y., 1969, pp. 237–322.Google Scholar
  6. 6.
    W.A. Bryant, “The Fundamentals of Chemical Vapor Deposition,” J. of Mat. Science, 12 (1977) pp. 1285–1306.Google Scholar
  7. 7.
    A.C. Shauffhauser, ed., Proc. Conf. CVD Refractory Metals, AIME, New York, N.Y., 1967.Google Scholar
  8. 8.
    J.M. Blocher, Jr., and J.C. Withers, eds., Proc. 2nd Int. Conf. CVD, ECS, New York, N.Y., 1971.Google Scholar
  9. 9.
    F.A. Glaski, ed., Proc. 3rd Int. Conf. CVD, ANS, Hinsdale, Ill., 1972.Google Scholar
  10. 10.
    G.F. Wakefield and J.M. Blocher, Jr., eds., Proc. 4th Int. Conf. CVD, ECS, Princeton, NJ., 1973.Google Scholar
  11. 11.
    J.M. Blocher, Jr., H.E. Hintermann and L.H. Hall, eds., Proc. 5th Int. Conf. CVD, ECS, Princeton, N.J., 1975.Google Scholar
  12. 12.
    L.E. Donaghey, P. Rai-Choudhury and R.N. Tauber, eds., Proc. 6th Int. Conf. CVD, ECS, Princeton, N.J., 1977.Google Scholar
  13. 13.
    T.O. Sedgewick and H. Lydten, eds., Proc. 7th Int. Conf. CVD, ECS, Princeton, N.J., 1979.Google Scholar
  14. 14.
    J.M. Blocher, Jr., G.E. Vuillard and G. Wahl, eds., Proc. 8th Int. Conf. CVD, ECS, Pennington, N.J., 1981.Google Scholar
  15. 15.
    McD. Robinson, G.W. Cullen, C.H.J. van den Brekel, J.M. Blocher, Jr., and P. Rai-Choudhury eds., Proc. 9th Int. Conf. CVD, ECS, Pennington, N.J., 1984.Google Scholar
  16. 16.
    J.A. Amick and W. Kern, “Chemical Vapor Deposition Techniques for the Fabrication of Semiconductor Devices,” in ref. 8, pp. 551–570.Google Scholar
  17. 17.
    J.J. Tietjen, “Chemical Vapor Deposition of Electronic Materials,” in Annual Review of Material Science, Vol. 3, R.A. Huggins, R.H. Bube and R.W. Roberts, eds., Annual Reviews, Palo Alto, 1973, pp. 317–326.Google Scholar
  18. 18.
    W. Kern and G.L. Schnable, “Low-Pressure Chemical Vapor Deposition for Very Large-Scale Integration Processing-A Review,” IEEE Trans. Electron Dev., ED-26 (4) (1979), pp. 647–657.Google Scholar
  19. 19.
    B.A. Macklin and J.C. Withers, “The Chemical Vapor Deposition of Iridium,” Proc. Conf. CVD Refractory Metals, AIME, New York, N.Y., 1967 ref. 7, pp. 161–173.Google Scholar
  20. 20.
    J.M. Wood and F.W. Frey, “Chemical Vapor Deposition of Beryllium Metal,” ref. 7, pp. 205–216.Google Scholar
  21. 21.
    C. Beguin, E. Horvath and A.J. Perry, “Tantalum Coating of Mild Steel by Chemical Vapor Deposition,” Thin Solid Films, 46 (1977) pp. 209–212.Google Scholar
  22. 22.
    H.M.J. Mazille, “Chemical Vapor Deposition of Chromium onto Nickel,” Thin Solid Films, 65 (1980) pp. 67–74.Google Scholar
  23. 23.
    C.I. Fairchild, “Chemical Vapor Deposition of Tungsten-Molybdenum-Rhenium Ternary Alloys,” ref. 7, pp. 149–159.Google Scholar
  24. 24.
    M. Miyake, Y. Hirooka, R. Imoto and T. Sano, “Chemical Vapor Deposition of Niobium on Graphite,” Thin Solid Films, 63 (1979) pp. 303–308.Google Scholar
  25. 25.
    D.W. Carroll and W.J. McCreary, “Fabrication of ThimWall, Free-standing Inertial Confinement Fusion Targets by Chemical Vapor Deposition,” J. Vac. Sci. Technology, 20 (4) (1982) pp. 1087–1090.Google Scholar
  26. 26.
    R.J.H. Voorhoeve and J.W. Merewether, “Selective Deposition of Silver on Silicon by Reaction with Silver Fluoride Vapor,” J. Electrochem. Soc. 119 (3) (1972) pp. 364–368.Google Scholar
  27. 27.
    D.R. Biswas, C. Ghosh and R.L. Layman, “Vapor Phase Decomposition of Aluminum Film on Quartz Substrate,” J. Electrochem. Soc.-Accelerated Brief Communication 130 (1) (1983) pp. 234–236.Google Scholar
  28. 28.
    E.H. Maus, Sr., “Vapor Deposition of Aluminum by Thermal Decomposition,” Tech. Proc. Amer. Electroplaters Soc., 48 (1961) pp. 149–151.Google Scholar
  29. 29.
    H.O. Pierson, “Aluminum Coatings by the Decomposition of Alkyls,” Thin Solid Films 45 (1977) pp. 257–263.Google Scholar
  30. 30.
    D. Fatu, M. Muscalu and C.E. Morosanu, “X-ray Study of CVD Aluminum Thin Films Deposited on Silicon and Quartz Substrates,” Mat Chem. 5(1) (1980) pp. 19–28.Google Scholar
  31. 31.
    A. Malazgirt and J.W. Evans, “Production of Al and Al Coatings by Thermal Decomposition of Al Alkyls,” Met. Trans. 11B (1980) pp. 225–232.Google Scholar
  32. 32.
    J.A. Papke and R.D. Stevenson, “Evaluation of Metal Organic Compounds as Materials for Chemical Vapor Deposition,” ref. 7, pp. 193–204.Google Scholar
  33. 33.
    J.C. Withers and L.C. McCandless, “Aluminum Coatings by a Pyrolytic Spray Chemical Vapor Deposition Process,” ref. 8, pp. 393–407.Google Scholar
  34. 34.
    M.J. Cooke, R.A. Heinecke, R.C. Stern and J.W.C. Maes, “LPCVD of Aluminum and Al-Si Alloys for Semiconductor Metallization,” Solid State Tech, 25(12) (1982), pp. 62–65.Google Scholar
  35. 35.
    M.L. Green, R.A. Levy, R.G. Nuzzo and E. Coleman, “Aluminum Films Prepared by Metal-Organic Low Pressure Chemical Vapor Deposition,” Thin Solid Films 114 (1984) pp. 367–377.Google Scholar
  36. 36.
    R.A. Levy, M.L. Green and P.K. Gallagher, “Characterization of LPCVD Aluminum for VLSI Processing,” J. Electrochem. Soc. 131 (9) (1984) pp. 2175–2182.Google Scholar
  37. 37.
    D.R. Carley and J.H. Dunn, “Aluminum Plating Employing Amine Complex of Aluminum Hydride,” U.S. Patent 3375129, March 26, 1968.Google Scholar
  38. 38.
    C.M. Oualline and G.F. Wakefield, “Vapor Coating Aluminum on Iron-Containing Substrate,” U.S. Patent 3471321, Oct. 7, 1969.Google Scholar
  39. 39.
    R.A. Levy, P.K. Gallagher, R. Contolini and F. Schrey, “Properties of LPCVD Aluminum Films Produced by Disproportionation of Aluminum Monochloride,” J. Electrochem. Soc. 132 (2) (1985) pp. 457–463.Google Scholar
  40. 40.
    T. Ito, “Metal Thin Film,” U.S. Patent 4430364, February 7, 1984.Google Scholar
  41. 41.
    W. Blitz, W. Fischer and R. Juza, “Uber die Pneumatolytische Uberfuhrung von Gold durch Chlor,” Z. Anorg. U. Allgem. Chem. 176 (1928) pp. 121–142.Google Scholar
  42. 42.
    F.G. Mann, A.F. Wells and D. Purdie, “The Constitution of Complex Metallic Salts,” J. Chem. Soc. (1937), Pt. 2, pp. 1828–1836.Google Scholar
  43. 43.
    L. Vandenbulcke and G. Vuillard, “Chemical Vapor Deposition of Amorphous Boron on Massive Substrates,” J. Electrochem. Soc. 123 (2) (1976) pp. 278–285.Google Scholar
  44. 44.
    H.O. Pierson and A.W. Mullendore, “The Chemical Vapor Deposition of Boron from Diborane,” Proc. 7th Int. Conf. CVD, ECS, Princeton, N.J., 1979 ref. 13, pp. 360–367.Google Scholar
  45. 45.
    S.J.W. Price and A.F. Trotman-Dickenson, “Metal Carbon Bonds. III. Pyrolyses of Trimethyl Bismuth, Trimethyl Antimony and Dimethyltin Dichloride,” Trans. Farad. Soc., 54 (1958) pp. 1630–1637.Google Scholar
  46. 46.
    E.J. Jablonski, “Experiments in Thin Co Film Production by Thermal Decomposition of the Metal Acetylacetonate,” Cobalt, 14 (1962) pp. 28–31.Google Scholar
  47. 47.
    G.F. Wakefield, “Chromium Coatings Prepared by Chemical Vapor Deposition,” J. Electrochem. Soc. 116 (1) (1969) pp. 5–9.Google Scholar
  48. 48.
    W. Hanni and H.E. Hintermann, “Chemical Vapour Deposition of Chromium,” Thin Solid Films 40 (1977) pp. 107–114.Google Scholar
  49. 49.
    N.G. Anantha, V.Y. Doo and D.K. Seto, “Chromium Deposition from Dicumene-Chromium to Form Metal-Semiconductor Devices,” J. Electrochem. Soc. 118 (1) (1971) pp. 163–165.Google Scholar
  50. 50.
    B.B. Owen and R.T. Webber, “Plating Cr by Thermal Decomposition of Chromium Hexacarbonyl,” Metals Technol. 15(1) (1948).Google Scholar
  51. 51.
    J.J. Lander and L.H. Germer, “Plating Mo, W and Cr by Thermal Decomposition of Their Carbonyls,” Metals Technol. 14(6) (1947).Google Scholar
  52. 52.
    G.D. Kuznetsov, A.A. Babad-Zakhryapin and V.F. Gvozd, “Production of Copper Coatings by the Decomposition of Copper Chlorides,” Protection Metals 8(5) (1972) pp. 565–6.Google Scholar
  53. 53.
    P. Pawlyk, “Gas Plating Metal Objects with Copper Acetylacetonate,” U.S. Patent 2704728, March 22, 1955.Google Scholar
  54. 54.
    R.L. Van Hemert, L.B. Spendlove and R.E. Sievers, “Vapor Deposition of Metals by Hydrogen Reduction of Metal Chelates,” J. Electrochem. Soc. 112 (11) (1965) pp. 1123–1126.Google Scholar
  55. 55.
    R. Kaplan and N. Bottka, “Epitaxial Growth of Fe on GaAs by Metalorganic Chemical Vapor Deposition in Ultrahigh Vacuum,” Appl. Phys. Lett. 41 (10) (1982) pp. 972–974.Google Scholar
  56. 56.
    Y. Macheteau, “Croissance de Cristaux de Fer par Decomposition Thermique des Fluorures de Fer Gazeux,” J. Crystal Growth 28 (1975) pp. 93–102.Google Scholar
  57. 57.
    F.B. Litton, “Preparation and Some Properties of Hafnium Metal,” J. Electrochem. Soc. 98 (12) (1951) pp. 488–494.Google Scholar
  58. 58.
    J.J. Casey, R.R. Verderber and R.R. Garnache, “Chemical Vapor Deposition of Mo onto Si,” J. Electrochem. Soc. 114 (2) (1967) pp. 201–204.Google Scholar
  59. 59.
    T. Sugano, H. Chou, M. Yoshida and T. Nishi, “Chemical Deposition of Mo on Si,” Jap. J. Appl. Phys. 7 (9) (1968) pp. 1028–1038.Google Scholar
  60. 60.
    D.K. Seto, V.Y. Doo and S. Dash, “Growth and Characterization of Low Temperature CVD Molybdenum Films,” ref. 8, pp. 659–692.Google Scholar
  61. 61.
    K. Yasuda and J. Murota, “Molybdenum Film Formation by Low Pressure Chemical Vapor Deposition,” Jap. J. Appl. Phys. 22 (10) (1983) pp. L615–L617.Google Scholar
  62. 62.
    S.S. Simeneov, E.J. Kafedjiiska and A.L. Guerassimov, “Preparation of Mo/Si Schottky Barriers by Chemical Vapor Deposition of Molybdenum onto Epitaxial Silicon Substrates,” Thin Solid Films 115 (1984) pp. 291-298.Google Scholar
  63. 63.
    L.H. Kaplan and F.M. d’Heurle, “The Deposition of Molybdenum and Tungsten Films from Vapor Decomposition of Carbonyls,” J. Electrochem. Soc. 117 (5) (1970) pp. 693–700.Google Scholar
  64. 64.
    A.I. DeRosa, D.B. Dove and R.E. Loehman, “Properties of Molybdenum Films Prepared by Decomposition of the Carbonyl,” J. Vac. Sci Technol., 11(1) (1974) pp. 455–457.Google Scholar
  65. 65.
    M. Miyake, Y. Hirooka, T. Imoto and T. Sano, “Chemical Vapor Deposition of Molybdenum on Graphite,” Thin Solid Films 72 (1980) pp. 247–248.Google Scholar
  66. 66.
    G.G. Pinneo, “Low Temperature CVD of Refractory Metal Contacts to Elemental Semiconductors,” Proc. 3rd Int. Conf. CVD, ANS, Hinsdale, Ill., 1972ref. 9, pp. 462–474.Google Scholar
  67. 67.
    V.F. Korzo, G.A. Lyashchenko, B.I. Kozyrkin and V.P. Rumyentseva, “Preparation of Niobium Films from the Gas Phase”. Inorganic Mat. 7(10) (1971) pp. 1649–1650.Google Scholar
  68. 68.
    D.E.R. Kehr, “The Kinetics and Microstructure of Chemically Vapour Deposited Niobium and Tantalum,” High Temperature-High Pressures 10 (1978) pp. 477–486.Google Scholar
  69. 69.
    Editorial Staff, “Metal Plating from Carbonyl Gases,” Chem. Eng. 56 (10) 1949) pp. 118–119.Google Scholar
  70. 70.
    V.G. Syrkin and Yu. G. Kiryanov, “Chemical Scheme of Production of Magnetic Films by the Carbonyl Method,” J. Appl. Chem. USSR, 43 (1970) pp. 1076–81.Google Scholar
  71. 71.
    M. Skibo and F.A. Greulich, “Characterization of Chemically Vapor Deposited Ni - (0.05-0.20 w/o) B Alloys,” Thin Solid Films 113 (1984) pp. 225–234.Google Scholar
  72. 72.
    C.H.J. van den Brekel, R.M.M. Fonville, P.J.M. van der Straten and G. Verspui, “CVD of Ni, TiN and TiC on Complex Shapes,” ref. 14, pp. 142–156.Google Scholar
  73. 73.
    S. Lehwald and H. Wagner, “Chemical Vapour Deposition of Osmium Films,” Thin Solid Films 21 (1974) pp. 523–526.Google Scholar
  74. 74.
    J.C. Viguie and J. Spitz, “Chemical Vapor Deposition at Low Temperatures,” J. Electrochem Soc. 122 (4) (1975) pp. 585–588.Google Scholar
  75. 75.
    M.J. Rand, “Chemical Vapor Deposition of Thin-Film Platinum,” J. Electrochem. Soc. 120 (5) (1973) pp. 686–693.Google Scholar
  76. 76.
    L.R. Crisler and W.G. Eggerman, “Chemical Vapor Deposition of Uranium and Plutonium,” U.S. Patent 3832222, August 27, 1974.Google Scholar
  77. 77.
    J.G. Donaldson, F.W. Hoertel and A.A. Cochran, “A Preliminary Study of Vapour Deposition of Rhenium and Rhenium-Tungsten,” J. Less-Common Metals 14 (1968) pp. 93–101.Google Scholar
  78. 78.
    F.A. Glaski, “Formation of (0001) Oriented Rhenium Surfaces by Chemical Vapor Deposition,” in IEEE Conf. Rec. Thermion. Conversion Spec, PAP Annual Conf. 9th, 1970, pp. 128–129.Google Scholar
  79. 79.
    V.G. Syrkin, A.A. Uel’skii, R.I. Akmeeva and L.N. Romanova, “Development of a Technological Process for Production of Rhenium Coatings by the Carbonyl Method,” J. Appl. Chem. USSR 45(10) (1972) pp. 2366–2369.Google Scholar
  80. 80.
    H.J. Anderson and A. Brenner, “Chemical Vapor Deposition of Rhenium,” ref. 8, pp. 355–366.Google Scholar
  81. 81.
    J.N. Crosby and R.S. Hanley, “Chemical Vapor Decomposition,” U.S. Patent 4250210, February 10, 1981.Google Scholar
  82. 82.
    M.E. Gross, L.E. Papa, M.L. Green and K.J. Schnoes, “Chemical Vapor Deposition of Ruthenium,” Extended Abstract Bull. 165th Electrochem. Soc. Meeting (Cincinnati, Ohio 1984), Abstract. No. 101.Google Scholar
  83. 83.
    B.W. Gonser and E.E. Slowter, “The Coating of Metals with Tin from the Vapor Phase,” Tech. Pub. Int. Tin R&D Devel. Council, New York (1938).Google Scholar
  84. 84.
    H.J. Homer and O. Cummins, “Coating with Tin by Thermal Decomposition of Organotin Vapors,” U.S. Patent 2916400, December 8, 1959.Google Scholar
  85. 85.
    J. Spitz and J. Chevallier, “Comparative Study of Tantalum Deposition by Chemical Vapor Deposition and Electron Beam Vacuum Evaporation,” Ref. 11, pp. 204–213.Google Scholar
  86. 86.
    A.E. Van Arkel, “On the Preparation of High Melting Metals by Thermal Dissociation of their Compounds,” Metallwirtschaft 13 (1934) pp. 405–408.Google Scholar
  87. 87.
    I.E. Campbell, R.I. Jaffee, J.M. Blocher, Jr., J. Gurland and B.W. Gonser, “The Preparation and Properties of Pure Titanium,” J. Electrochem. Soc., 93(6) (1948) pp. 271–285.Google Scholar
  88. 88.
    K.J. Miller, M.J. Grieco and S.M. Sze, “Growth of Vanadium on Silicon Substrates,” J. Electrochem. Soc. 113 (9) (1966) pp. 902–904.Google Scholar
  89. 89.
    B.A. Macklin, “Research on Vapor Plating from Organometallic Compounds,” Technical Report AFML-TR-68-9 (Wright-Patterson AFB), February 1968.Google Scholar
  90. 90.
    C.R. Crowell, J.C. Sarace and S.M. Sze, “Tungsten-Semiconductor Schottky-Barrier Diodes,” Trans. Met. Soc. AIME 233 (1965) pp. 478–481.Google Scholar
  91. 91.
    K.Y. Tsao and H.H. Busta, “Low Pressure Chemical Vapor Deposition of Tungsten on Polycrystalline and Single-Crystal Silicon Via Silicon Reduction,” J. Electrochem. Soc. 131 (11) (1984) pp. 2702–2708.Google Scholar
  92. 92.
    G.D. Barnett, A. Miller, G.R. Pulliam and R.G. Warren, “Chemical Vapor Deposition of Single-Crystal Tungsten Films on Sapphire,” in Proc. Conf. Metallurgy of Advanced Electronic Materials, G.E. Brock, ed., Gordon and Breach, New York, N.Y., 1962, pp. 263–272.Google Scholar
  93. 93.
    J.M. Shaw and J.A. Amick, “Vapor-Deposited Tungsten as a Metallization and Interconnection Material for Silicon Devices,” RCA Review (1970) pp. 306–316.Google Scholar
  94. 94.
    W.A. Bryant, “Kinetics of Tungsten Deposition by the Reaction of WF6 and Hydrogen,” J. Electrochem Soc. 125 (9) (1978) pp. 1534–1543.Google Scholar
  95. 95.
    C.M. Melliar-Smith, A.C. Adams, R.H. Kaiser and R.A. Kushner, “Chemically Vapor Deposited Tungsten for Semiconductor Metallizations,” J. Electrochem. Soc. 121 (2) (1974) pp. 298–303.Google Scholar
  96. 96.
    G.J. Vogt, “Low-Temperature Chemical Vapor Deposition of Tungsten from Tungsten Hexacarbonyl,” J. Vac. Sci. Technol. 20 (4) (1982) pp. 1336–1340.Google Scholar
  97. 97.
    M. Diem, M. Fisk and J. Goldman, “Properties of Chemically Vapor-Deposited Tungsten Thin Films on Silicon Wafers,” Thin Solid Films 107 (1983) pp. 39–43.Google Scholar
  98. 98.
    R.B. Holden and B. Kopelman, “The Hot-Wire Process for Zirconium,” J. Electrochem. Soc. 100 (3) (1953) pp. 120–125.Google Scholar
  99. 99.
    A.E. van Arkel, Reine Metalle, Julius Springer, Berlin, 1939; Edward Bros., Ann Abor, Mich. 1943.Google Scholar
  100. 100.
    S.D. Allen, “Laser Chemical Vapor Deposition,” Nato Adv. Study Inst. Ser., Ser. B. 84 (Phys. Processes Laser-Mater. Interact.), (1983), pp. 455–68.Google Scholar
  101. 101.
    J.Y. Tsao, R.A. Becker, D.J. Ehrlich, and F.J. Leonberger, “Photodeposition of Ti and Application to Direct Writing of Ti:LiNb03 Waveguides,” Appl. Phys. Lett., 42(7) (1983) pp. 559–61.Google Scholar
  102. 102.
    T. Ito, T. Sugii and T. Nakamura, “Aluminum Plasma-CVD for VLSI Circuit Interconnections,” Proc. 1982 Symp. VLSI Tech., Jap. Soc. Appl. Phys., paper 2-2 (1982) pp. 20–21.Google Scholar
  103. 103.
    S.P. Murarka, Silicides for VLSI Applications, Academic Press, New York, NY, 1983.Google Scholar
  104. 104.
    A.N. Saxena and D. Pramanik, “VLSI Multilevel Metallization,” Solid State Technology, 27(12) (1984) pp. 93–100.Google Scholar
  105. 105.
    H.B. Michaelson, “Relation Between an Atomic Electronegativity Scale and the Work Function,” IBM J. Res. Dev., 22(1) (1978) pp. 72–80.Google Scholar
  106. 106.
    F.M. d’Heurle and P.S. Ho, “Electromigration in Thin Films,” in Thin Films — Inter diffusion and Reactions, J.M. Poate, K.M. Tu and J.W. Mayer, eds., J. Wiley and Sons, New York, N.Y., 1978, pp. 243–303.Google Scholar
  107. 107.
    W. Kern and V.S. Ban, “Chemical Vapor Deposition of Inorganic Thin Films,” ref. 1, Chap. III-2.Google Scholar
  108. 108.
    J.M. Aitken, “Radiation-Induced Trapping Centers in Thin Silicon Dioxide Films,” J. Non-Crystall. Solids, 40 (1980) pp. 31–47.Google Scholar
  109. 109.
    N.E. Miller and I. Beinglass, “Hot-wall CVD Tungsten for VLSI,” Solid State Technology, 23(12) (1980), pp. 79–82.Google Scholar
  110. 110.
    P.A. Gargini, “Tungsten Barrier Eliminates VLSI Circuit Shorts,” Ind. Res. Dev. 25(3) (1983) pp. 141–147.Google Scholar
  111. 111.
    S. Swirhun, K.C. Saraswat and R.M. Swanson, “Contact Resistance of LPCVD W/Al and PtSi/W/Al Metallization,” IEEE Electron Device Letters, EDL-5(6) (1984) pp. 209–211.Google Scholar
  112. 112.
    M.L. Green and R.A. Levy, “Structure of Selective Low Pressure Chemically Vapor Deposited Films of Tungsten,” J. Electrochem. Soc., to be published, May, 1985.Google Scholar
  113. 113.
    R.A. Levy and P.K. Gallagher, “Argon Entrapment and Evolution is Sputtered TaSi2 Films,” J. Electrochem. Soc., to be published, Fall 1985.Google Scholar
  114. 114.
    R. Solanki, W.H. Ritchie and G.J. Collins, “Photodeposition of Al2O3 and Al Thin Films,” Appl. Phys. Lett., 43(5) (1983) pp. 454–456.Google Scholar
  115. 115.
    T.M. Mayer, G.J. Fisanick and T.S. Eichelberger, IV., “Deposition of Cr Films by Multiphonon Dissociation of Cr(CO)6,” J. Appl. Phys. 53(12) (1982) pp. 8462–8469.Google Scholar
  116. 116.
    D.M. Brown, W.R. Cady, J.W. Sprague and P.J. Salvagni, “The P-Channel Refractory Metal Self-Registered Mosfet,” IEEE Trans. Elec. Dev., ED-18(10) (1971) pp. 931–940.Google Scholar
  117. 117.
    W.E. Engeler and D.M. Brown, “Performance of Refractory Metal Multilevel Interconnection System,” IEEE Trans. Elec. Dev., ED-19(1) (1972) pp. 54–61.Google Scholar
  118. 118.
    M.L. Green and R.A. Levy, unpublished work.Google Scholar
  119. 119.
    D.L. Brors, K.A. Monnig, J.A. Fair, W. Coney and K.C. Saraswat, “CVD W — A Solution for the Poor Step Coverage and High Contact Resistance of Al,” Solid State Technology, 27(4) (1984) pp. 313–314.Google Scholar
  120. 120.
    N.E. Miller and I. Beinglass, “CVD Tungsten Interconnect and Contact Barrier Technology for VLSI,” Solid State Technology, 25(12) (1982) pp. 85–90.Google Scholar
  121. 121.
    W.A. Metz, J.E. Mahan, V. Malhotra and T.L. Martin, “Electrical Properties of Selectively Deposited W Thin Films,” Appl. Phys. Letts., 44(12) (1984) pp. 1139–1141.Google Scholar
  122. 122.
    T. Moriya, S. Shima, Y. Hazuki, M. Chiba and M. Kashiwagi, “A Planar Metallization Process — Its Application to Tri-Level Aluminum Interconnection,” Proc. 1983 Int. Elec. Dev. Meeting, Paper 25.3, (1983) pp. 550–553.Google Scholar
  123. 123.
    R.S. Blewer and V.A. Wells, “Thick W Films in Multilayer Conductor Systems: Properties and Deposition Techniques,” Proc.Ist IEEE VLSI Multilevel Interconnection Conf., (New Orleans, June 1984), IEEE Cat. No. 84CH1999-2, pp. 153–158.Google Scholar
  124. 124.
    W.T. Stacy, E.K. Broadbent and M.H. Norcott, “Interfacial Structure of W Layers Formed by Selective LPCVD,” J. Electrochem. Soc., 132(2) (1985) pp. 444–448.Google Scholar

Copyright information

© TMS 1985

Authors and Affiliations

  • M. L. Green
  • R. A. Levy

There are no affiliations available

Personalised recommendations