Heart and Vessels

, Volume 13, Issue 5, pp 211–228 | Cite as

It is time to ask what adenosine can do for cardioprotection

  • Masafumi Kitakaze
  • Masatsugu Hori


Prevention and attenuation of ischemia and reperfusion injury in patients with acute coronary syndrome are critically important for cardiologists. To save these patients from deleterious ischemic insults, there are three different strategies. The first strategy is to increase ischemic tolerance before the onset of myocardial ischemia; the second is to attenuate the ischemia and reperfusion injury when an irreversible process of myocardial cellular injury occurs; the third is to treat the ischemic chronic heart failure that is caused by acute myocardial infarction. Adenosine, which is known to be cardioprotective against ischemia and reperfusion injury, may merit being used for these three cardioprotection strategies. First of all, adenosine induces collateral circulation via induction of growth factors, and triggers ischemic preconditioning, both of which induce ischemic tolerance in advance. Secondly, endogenous adenosine may mediate the infarct size-limiting effect of ischemic preconditioning, and exogenous adenosine is known to attenuate ischemia and reperfusion injury. Thirdly, we also revealed that adenosine metabolism is changed in patients with chronic heart failure, and increases in adenosine levels may attenuate the severity of ischemic heart failure. Therefore, adenosine therapy may improve the pathophysiology of ischemic chronic heart failure. Taking these factors together, we hereby propose potential tools for cardioprotection attributable to adenosine in ischemic hearts, and we postulate the use of adenosine therapy before, during, and after the onset of acute myocardial infarction.

Key words

Adenosine Collateral Growth factor Preconditioning Protein Kinase C Ecto-5′-nucleotidase Chronic heart failure Clinical trial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hori M, Kitakaze (1991) Adenosine, the heart and coronary circulation (brief review). Hypertension 18:565–574PubMedCrossRefGoogle Scholar
  2. 2.
    Kitakaze M, Hori M, Kamada T (1993) The role of adenosine and its interaction with alpha-adrenoceptor activity in myocardial ischemic and reperfusion injury (brief review). Cardiovasc Res 27:18–27PubMedCrossRefGoogle Scholar
  3. 3.
    Mubagwa K, Mullane K, Flameng W (1996) Role of adenosine in the heart and circulation. Cardiovasc Res 32:797–813PubMedGoogle Scholar
  4. 4.
    Lagerkranser N, Sollevi A, Irestedt L, Tidgren B, Andreen M (1985) Renin release during controlled hypotension with sodium nitroprusside, nitroglycerin and adenosine: a comparative study in dogs. Acta Anaesthesiol Scand 29:45–49PubMedCrossRefGoogle Scholar
  5. 5.
    Parmely MJ, Zhou WW, Edward CK III, Borcherding DR, Silverstein R, Morrison DC (1993) Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrotic factor-α production and protect mice against endotoxin challenge. J Immunol 151:389–396PubMedGoogle Scholar
  6. 6.
    Fischer S, Knoll R, Renz D, Karliczek GF, Schaper W (1997) Role of adenosine in the hypoxic induction of vascular endothelial growth factor in porcine brain derived microvascular endothelial cells. Endothelium 1997;5(4):373CrossRefGoogle Scholar
  7. 7.
    Dusseuau JW, Hutchins M, Malbasa DS (1986) Stimulation of angiogenesis by adenosine on the chick chorioallantonic membrane. Circ Res 59:163–170CrossRefGoogle Scholar
  8. 8.
    Meinnger CJ, Schelling ME, Granger HJ (1988) Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am J Physiol 255:H554–H562Google Scholar
  9. 9.
    Meinnger CJ, Granger HJ (1990) Mechanisms leading to adenosine-stimulated proliferation of microvascular endothelial cells. Am J Physiol 258:H198–H206Google Scholar
  10. 10.
    Ohisalo JJ (1987) Regulatory functions of adenosine. Med Biol 65:181–191PubMedGoogle Scholar
  11. 11.
    Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74:5482–5486PubMedCrossRefGoogle Scholar
  12. 12.
    Londos C, Cooper DMF, Schlegel W, Rodbell M (1978) Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci USA 75:5362–5366PubMedCrossRefGoogle Scholar
  13. 13.
    Olsson RA, Pearson JD (1990) Cardiovascular purinoceptors. Physiol Rev 70:761–845PubMedGoogle Scholar
  14. 14.
    Degenring FH (1976) The effect of acidosis and alkalosis on coronary flow and cardiac nucleotide metabolism. Basic Res Cardiol 71:287–290PubMedCrossRefGoogle Scholar
  15. 15.
    Hori M, Kitakaze M, Tamai J, Iwakura K, Kitabatake A, Inoue M, Kamada T (1989) α2-Adrenoceptor stimulation can augment coronary vasodilation maximally induced by adenosine in dogs. Am J Physiol 257:H132–H140PubMedGoogle Scholar
  16. 16.
    Hori M, Kitakaze M, Tamai J, Koretsune Y, Iwai K, Iwakura K, Kagiya T, Kitabatake A, Inoue M, Kamada T (1988) α2-Adrenoceptor activity exerts dual control of coronary blood flow in canine coronary artery. Am J Physiol 255:H250–H260PubMedGoogle Scholar
  17. 17.
    Kitakaze M, Hori M, Gotoh K, Sato H, Iwakura K, Kitabatake A, Inoue M, Kamada T (1989) Beneficial effects of α2-adrenoceptor activity on ischemic myocardium during coronary hypoperfusion in dogs. Circ Res 65:1632–1645PubMedCrossRefGoogle Scholar
  18. 18.
    Nayler WG, Price JM, Lowe TE (1967) Inhibition of adenosine-induced coronary vasodilation. Cardiovasc Res 1:63–66PubMedCrossRefGoogle Scholar
  19. 19.
    Achterberg PW, de Tombep P, Harmsen E, de Jong JW (1985) Myocardial S-adenosylhomocysteine hydrolase is important for adenosine production during norrrioxia. Biochim Biophys Acta 840:393–400PubMedCrossRefGoogle Scholar
  20. 20.
    Sparks HV Jr, Bardenheuer H (1986) Regulation of adenosine formation in the heart. Circ Res 58:193–201PubMedCrossRefGoogle Scholar
  21. 21.
    Llyod GE, Scharader J (1987) The importance of the transmethylation pathway for adenosine metabolism in the heart. In: Gerlach E, Becker BF. (eds) Topics and perspectives in adenosine research. Springer, Berlin Heidelberg, pp 199–207CrossRefGoogle Scholar
  22. 22.
    Deussen A, Borst M, Schrader J (1988) Formation of adenosylhomocysteine in the heart. I: an index intracellular adenosine. Circ Res 63:240–249PubMedCrossRefGoogle Scholar
  23. 23.
    Rubio R, Wiedmeier VT, Berne RM (1974) Relationship between coronary flow and adenosine production and release. J Mol Cell Cardiol 6:561–566PubMedCrossRefGoogle Scholar
  24. 24.
    Wadsworth RM (1989) The effects of aminophylline on the increased myocardial blood flow produced by systemic hypoxia or by coronary artery occlusion. Eur Pharmacol 20:130–132CrossRefGoogle Scholar
  25. 25.
    Wei HM, Kang YH, Merrill GF (1989) Canine coronary vasodepressor response to hypoxia are abolished by 8-phenyltheophylline. Am J Physiol 257:H1043–H1048PubMedGoogle Scholar
  26. 26.
    Curnish RR, Berne RM, Rubio R (1972) Effects of aminophylline on myocardial reactive hyperemia. Proc Soc Exp Biol Med 141:593–598PubMedGoogle Scholar
  27. 27.
    Merrill GF, Downey F, Jones CE (1986) Adenosine deaminase attenuates canine coronary vasodilation during systemic hypoxia. Am J Physiol 250:H579–H583PubMedGoogle Scholar
  28. 28.
    Wei HM, Kang YH, Merill GF (1988) Coronary vasodilation during global myocardial hypoxia: Effect of adenosine deaminase. Am J Physiol 254:H1004–H1009PubMedGoogle Scholar
  29. 29.
    Rubio R, Berne RM (1975) Regulation of coronary blood flow. Prog Cardiovasc Dis 8:105–122CrossRefGoogle Scholar
  30. 30.
    Kitakaze M, Hori M, Tamai J, Iwakura K, Koretsune Y, Kagiya T, Iwai K, Kitabatake A, Inoue M, Kamada T (1987) α1-Adrenoceptor activity regulates release of adenosine from the ischemic myocardium in dogs. Circ Res 60:631–639PubMedCrossRefGoogle Scholar
  31. 31.
    Hori M, Tamai J, Kitakaze M, Iwakura K, Gotoh K, Iwai K, Koretsune Y, Kagiya T, Kitabatake A, Kamada T (1989) Adenosine-induced hyperemia attenuates myocardial ischemia in coronary microembolization in dogs. Am J Physiol 257:H244–H251PubMedGoogle Scholar
  32. 32.
    Buxton ILO, Walther J, Westfall DP (1990) Purinergic mechanisms in cardiac blood vessels: stimulation of endothelial cell alpha receptors in vitro by the neurotransmitter norepinephrine leads to the rapid release of ATP and its subsequent breakdown to adenosine (abstract). Heart Vessels 4 (Suppl):27Google Scholar
  33. 33.
    Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Okazaki Y, Node K, Komamura K, Iwakura K, Inoue M, Kamada T (1995) α1-Adrenoceptor activation increases ectosolic 5′-nucleotidase activity and adenosine release in rat cardiomyocytes by activating protein kinase C. Circulation 91:2226–2234PubMedCrossRefGoogle Scholar
  34. 34.
    Kitakaze M, Minamino T, Node K, Komamura K, Inoue M, Hori M, Kamada T (1996) Activation of ecto-5′-nucleotidase by protein kinase C attenuates irreversible cellular injury due to hypoxia and reoxygenation in rat cardiomyocytes. J Mol Cell Cardiol 28:1945–1955PubMedCrossRefGoogle Scholar
  35. 35.
    Hermann SC, Feigl EO (1992) Adrenergic blockade blunts adenosine concentration and coronary vasodilation during hypoxia. Circ Res 70:1203–1216CrossRefGoogle Scholar
  36. 36.
    Watanabe E, Smith DM, Sun J, Smart FW, Delcarpio JB, Roberts TB, Van Meter CH Jr, Claycomb WC (1998) Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res Cardiol 93:30–37PubMedCrossRefGoogle Scholar
  37. 37.
    Schaper W (1991) Angiogenesis in the adult heart. Basic Res Cardiol 86 Suppl 2:51–56PubMedGoogle Scholar
  38. 38.
    Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98:2800–2804PubMedCrossRefGoogle Scholar
  39. 39.
    Yanagisawa MA, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C, Ito H (1992) Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257:1401–1403CrossRefGoogle Scholar
  40. 40.
    Abramovitch R, Neeman M, Reich R, Stein I, Keshet E, Abraham J, Solomon A, Marikovsky M (1998) Intercellular communication between vascular smooth muscle and endothelial cells mediated by heparin-binding epidermal growth factor-like growth factor and vascular endothelial growth factor. FEBS Lett 425:441–447PubMedCrossRefGoogle Scholar
  41. 41.
    Sasayama S, Fujita M (1992) Recent insights into coronary collateral circulation. Circulation 85:1197–1204PubMedCrossRefGoogle Scholar
  42. 42.
    Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N, Nishikawa SI (1999) Maturation of embryonic stem cells into endothelial cells in an In vitro model of vasculogenesis. Blood 93(4):1253–1263PubMedGoogle Scholar
  43. 43.
    Symons JD, Firoozmand E, Longhurst JC (1993) Repeated dipyridamole administration enhances collateral-dependent flow and regional function during exercise. A role for adenosine. Circ Res 73:503–513PubMedCrossRefGoogle Scholar
  44. 44.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136PubMedCrossRefGoogle Scholar
  45. 45.
    Liu GS, Thornton J, Van Winkle DM, Stanley AWH, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356PubMedCrossRefGoogle Scholar
  46. 46.
    Miura T, Ogawa T, Iwamoto T, Shimamoto K, Iimura O (1992) Dipyridamole potentiates the myocardial infarct size-limiting effect of ischemic preconditioning. Circulation 86:979–985PubMedCrossRefGoogle Scholar
  47. 47.
    Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H, Shinozaki Y, Chujo M, Mori M, Inoue M, Kamada T (1994) The infarct size-limiting effect of ischemic preconditioning is blunted by inhibition of 5′-nucleotidase activity and attenuation of adenosine release. Circulation 89:1237–1246PubMedCrossRefGoogle Scholar
  48. 48.
    Mitchell MB, Meng X, Ao L, Brown JM, Harken AH, Banerjee A (1995) Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 76:73–81PubMedCrossRefGoogle Scholar
  49. 49.
    Kitakaze M, Node K, Minamino T, Komamura K, Funaya H, Shinozaki Y, Chujo M, Mori H, Inoue M, Hori M, Kamada T (1996) The role of activation of protein kinase C in the infarct size-limiting effect of ischemic preconditioning through activation of ecto-5′-nucleotidase. Circulation 93:781–791PubMedCrossRefGoogle Scholar
  50. 50.
    Kitakaze M, Funaya H, Minamino T, Node K, Sato H, Ueda Y, Okuyama Y, Kuzuya T, Hori M, Yoshida K (1997) Role of Protein kinase C-α in activation of ecto-5′-nucleotidase in the preconditioned canine myocardium. Biochem Biophys Res Commun 239:171–175PubMedCrossRefGoogle Scholar
  51. 51.
    Tsuchida Am Liu Y, Liu GS, Cohen MV, Downey JM (1994) α1-Adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res 75:576–585CrossRefGoogle Scholar
  52. 52.
    Armstrong S, Ganote CE (1995) In vitro ischaemic preconditioning of isolated rabbit cardiomyocytes: effect of selective adenosine receptor blockade and calphostin C. Cardiovasc Res 29:647–652PubMedGoogle Scholar
  53. 53.
    Marbar MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress associated with resistance to myocardial infarction. Circulation 83:13–25Google Scholar
  54. 54.
    Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M (1993) Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:1293–1299PubMedCrossRefGoogle Scholar
  55. 55.
    Sakaguchi T, Sawa Y, Misahimura M, Amemiya A, Ueda H, Ueno Y, Matsuda H (1998) Ecto-5′-nucleotidase activated by heat shock protein 70 attenuates ischemia and reperfusion injury in myocardium. Evidence for a mechanism of second window protection Circulation 98:I–527Google Scholar
  56. 56.
    Kitakaze M, Hori M, Takashima S, Iwai K, Sato H, Inoue M, Kitabatake K, Kamada T (1992) Superoxide dismutase enhances ischemia-induced reactive hyperemic flow and adenosine release in dogs: A role of 5′-nucleotidase activity. Circ Res 71:558–566PubMedCrossRefGoogle Scholar
  57. 57.
    Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H, Shinozaki Y, Chujo M, Mori H, Inoue M, Kamada T (1994) Alpha1-adrenoceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5′-nucleotidase activity. J Clin Invest 93:2197–2205PubMedCrossRefGoogle Scholar
  58. 58.
    Murray KT, Fahrig SA, Deal KK, Po SS, Hu NN, Snyders DJ, Tamkun MM, Bennett PB (1994) Modulation of an inactivating human cardiac K+ channel by protein kinase C. Circ Res 75:999–1005PubMedCrossRefGoogle Scholar
  59. 59.
    Sato T, O’Rourke B, Marban E (1998) Modulation of mitochondrial ATP-dependent K channels by protein kinase C. Circ Res 83:110–114PubMedCrossRefGoogle Scholar
  60. 60.
    Liu Y, Sato T, O’Rourke B, Marban E (1998) Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97:2463–2469PubMedCrossRefGoogle Scholar
  61. 61.
    Kitakaze M, Hori M, Takashima S, Sato H, Inoue M, Kamada T (1993) Ischemic preconditioning increases adenosine release and 5′-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Implication for myocardial salvage. Circulation 87:208–215PubMedCrossRefGoogle Scholar
  62. 62.
    Zahler S, Becker BF, Raschke P, Gerlach E (1994) Stimulation of endothelial adenosine Ai receptors enhances adhesion of neutrophils in intact guinea pig coronary system. Cardiovasc Res 28:1366–1372PubMedCrossRefGoogle Scholar
  63. 63.
    Zhao J, Renner O, Latchman DS, Marber M (1997) The role of adenosine in the mediation of the resistance to simulated ischemia that follows expression of constitu-tively active PDC-δ. Circulation 96:I–450Google Scholar
  64. 64.
    Zhao J, Heads RJ, Wightman L, Marber M (1998) PKC-mediated cardioprotection requires adenosine receptor reoccupation (abstract). Circulation 98:I–71Google Scholar
  65. 65.
    Van Wylen DGL (1994). Effects of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during myocardial ischemia Circulation 89:2283–2289PubMedCrossRefGoogle Scholar
  66. 66.
    Przyklenk K, Hata K, Zhas L, Kloner RA, Elliott GT (1997) Disparate effects of preconditioning and MLA on 5′-NT and adenosine levels during coronary occlusion. Am J Physiol 273:H945–H951PubMedGoogle Scholar
  67. 67.
    Wolfe CI, Sievers RE, Visseren FLJ, Donnelly TJ (1993) Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment. Circulation 87:881–892PubMedCrossRefGoogle Scholar
  68. 68.
    Murry CE, Richard VJ, Reimer KA, Jennings RB (1990) Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Am J Physiol 260:H796–H804Google Scholar
  69. 69.
    Minamino T, Kitakaze M, Morioka T, Node K, Komamura K, Takeda H, Inoue M, Hori M, Kamada T (1996) Cardioprotection due to ischemic preconditioning correlates with increased of ecto-5′-nucleotidase activity. Am J Physiol 270:H238–H244PubMedGoogle Scholar
  70. 70.
    Kitakaze M, Mori H, Sakamoto H, Inoue M (1995) Disappearance of infarct size-limiting effect of ischemic preconditioning is attributable to dephosphorylation process of ecto-5′-nucleotidase. Circulation 92 (Suppl I):I–524Google Scholar
  71. 71.
    Minamino T, Kitakaze M, Node K, Komamura K, Shinozaki Y, Chujo M, Mori H, Hori M, Kamada T (1994) Potentiation of adenosine release slows the natural decay of cardioprotection of ischemic preconditioning: role of activation of ectosolic 5′-nucleotidase (abstract). Eur Heart J 15 (Abstract Suppl):553Google Scholar
  72. 72.
    Olafsson B, Forman MB, Puett DW, Pou A, Cates CU, Friesinger GC, Virmani R (1987) Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation 76:1135–1145PubMedCrossRefGoogle Scholar
  73. 73.
    Al-Awqati Q (1995) regulation of ion channels by ABC transporter that secrete ATP. Science 269:805–806PubMedCrossRefGoogle Scholar
  74. 74.
    Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346PubMedGoogle Scholar
  75. 75.
    Harder DR, Belardinelli L, Sperelakis N, Rubio R, Berne RM (1979) Differential effects of adenosine and nitroglycerin on the action potential of large and small coronary arteries. Circ Res 44:176–182PubMedCrossRefGoogle Scholar
  76. 76.
    Fenton RA, Rubio BR, Berne AM (1982) Effect of adenosine on calcium uptake by intact and cultured vascular smooth muscle. Am J Physiol 242:H797–H804PubMedGoogle Scholar
  77. 77.
    Aversano T, Ouyang P, Silverman H (1991) Blockade of the ATP-sensitive potassium channel modulates reactive hyperemia in the canine circulation. Circ Res 69:618–622PubMedCrossRefGoogle Scholar
  78. 78.
    Komaru T, Tanikawa T, Sugimura A, Kumagai T, Sato K, Kanatsuka H, Shirato K (1997) Mechanisms of coronary microvascular dilation induced by the activation of pertussis toxin-sensitive G proteins are vessel-size dependent. Heterogeneous involvement of nitric oxide pathway and ATP-sensitive K+ channels. Circ Res 80:1–10PubMedCrossRefGoogle Scholar
  79. 79.
    Nees S, Herzog V, Becker BF, Bock M, Rosiers CD, Gerlach E (1985) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol 80:515–529PubMedCrossRefGoogle Scholar
  80. 80.
    Matsuda H, Imai S (1990) Effects of adenosine and adenine nucleotides on the diameter of the isolated perfused pig coronary artery (abstract). Jpn J Pharmacol 52 (Suppl II):116Google Scholar
  81. 81.
    Kurtz A (1987) Adenosine stimulates guanylate cyclase activity in vascular smooth muscle cells. J Biol Chem 262:6296–6300PubMedGoogle Scholar
  82. 82.
    Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischemic brain: effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35:262–271CrossRefGoogle Scholar
  83. 83.
    Kitakaze M, Hori M, Sato H, Takashima S, Inoue M, Kitabatake A, Kamada T (1991) Endogenous adenosine inhibits platelet aggregation during myocardial ischemia in dogs. Circ Res 69:1402–1408PubMedCrossRefGoogle Scholar
  84. 84.
    Minamino T, Kitakaze M, Asanuma H, Tomiyama Y, Shiraga M, Sato H, Ueda Y, Funaya H, Kuzuya T, Matsuzawa Y, Hori M (1998) Endogenous adenosine inhibits P-selectin-dependent formation of coronary thrombi during hypoperfusion in dogs. J Clin Invest 101:1643–1653PubMedCrossRefGoogle Scholar
  85. 85.
    Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R (1986) Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 78:760–770PubMedCrossRefGoogle Scholar
  86. 86.
    Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R (1986) Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J Exp Med 158:1160–1177CrossRefGoogle Scholar
  87. 87.
    Cronstein BN (1991) Adenosine is an autacoid of inflammation: effects of adenosine on neutrophil function. In: Imai S, Nakazawa M (eds) Role of adenosine and adenine nucleotides in the biological system. Elsevier, Amsterdam, pp 515–520Google Scholar
  88. 88.
    Kitakaze M, Hori M, Morioka T, Takashima S, Sato H, Minamino T, Inoue M, Kamada T (1993) Attenuation of 5′-nucleotides and adenosine release in activated human polymorphonuclear leukocytes. Circ Res 73:524–533PubMedCrossRefGoogle Scholar
  89. 89.
    Belardinelli L, Isenberg G (1983) Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 53:287–297PubMedCrossRefGoogle Scholar
  90. 90.
    Sato H, Hori M, Kitakaze M, Takashima S, Inoue M, Kitabatake A, Kamada T (1992) Endogenous adenosine attenuates beta-adrenoceptor-mediated inotropic response in the hypoperfused canine myocardium. Circulation 85:1594–1603PubMedCrossRefGoogle Scholar
  91. 91.
    Richardt G, Wassa W, Kranzhofer R, Mayer E, Schöming A (1987) Adenosine inhibits exocytotic release of endogenous noradrenaline in rat heart: a protective mechanism in early myocardial ischemia. Circ Res 61:117–123PubMedCrossRefGoogle Scholar
  92. 92.
    Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306PubMedCrossRefGoogle Scholar
  93. 93.
    Kitakaze M, Takashima S, Sato H (1990) Stimulation of adenosine A1 and A2 receptors prevents myocardial stunning (abstract). Circulation 82:III–37Google Scholar
  94. 94.
    Kitakaze M, Hori M, Sato H, Iwakura K, Gotoh K, Inoue M, Kitabatake A, Kamada T (1991) Beneficial effects of α1-radrenoceptor activity on myocardial stunning in dogs. Circ Res 68:1322–1339PubMedCrossRefGoogle Scholar
  95. 95.
    Isenberg G, Belardinelli L (1984) Ionic basis for the antagonism between adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 55:309–325PubMedCrossRefGoogle Scholar
  96. 96.
    Isenberg G, Cerbai E, Klockner U (1987) Ionic channels and adenosine in isolated heart cells. In: Gerlach E, Becker BF (eds) Topics and perspective in cardiovascular research. Springer, Berlin, pp 323–335Google Scholar
  97. 97.
    Kitakaze M, Weisman HF, Marban E (1988) Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 77:685–695PubMedCrossRefGoogle Scholar
  98. 98.
    Marban E, Kitakaze M, Koretsune Y, Yue DT, Chacko VP, Pike MM (1990) Quantification of [Ca2+]1 in per-fused hearts. Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied for the study of ischemia and reperfusion. Circ Res 66:1255–1267PubMedCrossRefGoogle Scholar
  99. 99.
    Agarwal KC (1987) Adenosine and platelet function. In: Stefanovich V, Okayuz-Baklouti I (eds) Role of adenosine in cerebral metabolism and blood flow. VNU Science, Utrecht, pp 107–124Google Scholar
  100. 100.
    Newman WH, Becker BF, Heier M, Nees S, Gerlach E (1988) Endothelium-mediated coronary dilatation by adenosine does not depend on endothelial adenylate cyclase activation: studies in isolated guinea pig hearts. Pflügers Arch 413:1–7PubMedCrossRefGoogle Scholar
  101. 101.
    Hori M, Inoue M, Kitakaze M, Koretsune Y, Iwai K, Tamai J, Ito H, Kitabatake A, Sato T, Kamada T (1986) Role of adenosine in hyperemic response of coronary blood flow in microembolization. Am J Physiol 250: H509–H518PubMedGoogle Scholar
  102. 102.
    Hori M, Gotoh K, Kitakaze M, Iwai K, Iwakura K, Sato H, Koretsune Y, Kitabatake A, Inoue M, Kamada T (1991) Role of oxygen-mediated free radicals in myocardial edema and ischemia in coronary microembolization. Circulation 84:828-884Google Scholar
  103. 103.
    Kitakaze M, Hori M, Takasima S, Morioka T, Minamino T, Inoue M, Kamada T (1993) Superoxide dismutase protects the degradation of myocardial ectosolic 5′-nucleotidase and increases adenosine release during ischemia and reperfusion. Biorheology 30:359–371PubMedGoogle Scholar
  104. 104.
    Takeo S, Tanonaka K, Miyake K, Imago M (1988) Adenine nucleotide metabolites are beneficial for recovery of cardiac contractile force after hypoxia. J Mol Cell Cardiol 20:187–199PubMedCrossRefGoogle Scholar
  105. 105.
    Engler R (1987) Consequences of activation and adenosine-mediated inhibition of granulocytes during myocardial ischemia. Fed Proc 46:2407–2412PubMedGoogle Scholar
  106. 106.
    Foker JE, Einzig E, Wang T (1980) Adenosine metabolism and myocardial preservation. J Thorac Cardiovasc Surg 80:506–516PubMedGoogle Scholar
  107. 107.
    Reibel DK, Rovette MJ (1979) Myocardial adenosine salvage rates and restoration of ATP content following ischemia. Am J Physiol 237:H247–H252PubMedGoogle Scholar
  108. 108.
    Isselhard W, Eitenmuller J, Maurer W, DeVreese A, Reinke H, Czerniak A, Struz J, Herb HG (1980) Increase in myocardial adenine nucleotides induced by adenosine: dosage, mode of application and duration, species differences. J Moll Cell Cardiol 12:619–634CrossRefGoogle Scholar
  109. 109.
    Mauser M, Hoffmeister HM, Nienber C, Schaper W (1985) Influence of ribose, adenosine, and “AICAR” on the rate of myocardial adenosine triphosphate synthesis during reperfusion after coronary artery occlusion in the dog. Circ Res 56:220–230PubMedCrossRefGoogle Scholar
  110. 110.
    Dole VP (1962) Insulin-like actions of ribonucleic acid, adenylic acid, and adenosine. J Biochem Chem 237: 2758–2762Google Scholar
  111. 111.
    Green A, Newsholme EA (1979) Sensitivity of glucose uptake and lipolysis of white adipoytes of the rat to insulin and effects of some metabolites. Biochem J 180:365–370PubMedGoogle Scholar
  112. 112.
    Schwabe U, Schonhofer PS, Ebert R (1974) Facilitation by adenosine of the action of insulin on the accumulation of adenosine 3′,5′-monophosphate, lipolysis, and glucose oxidation in isolated fat cells. Eur J Biochem 46:536–545CrossRefGoogle Scholar
  113. 113.
    Raberger G, Kraupp O, Stuhlinger W Nell G, Chirikdjiam JJ (1970) The effects of an intracoronary infusion of adenosine on cardiac performance, blood supply and myocardial metabolism in dogs. Pflügers Arch 317:20–34PubMedCrossRefGoogle Scholar
  114. 114.
    Mainwaring RD, Mentzer RM Jr (1986) Effects of dipyridamole on myocardial glucose uptake in the newborn lamb. J Surg Res 40:528–533PubMedCrossRefGoogle Scholar
  115. 115.
    Mashaffey K, Puma JA, Barbagelata A, Casas CA, Lambe L, Orlandi C, Gibbons RJ, Califf RM, Granger CB (1997) Does adenosine in conjugation with thrombosis reduce infarct size? Results from the controlled, randomized AMISTAD Trial. Circulation 6:I-206–I-207Google Scholar
  116. 116.
    Nakayama H, Nanto S, Phara T, Morozumi T, Nagata S, Hoki N, Kitakaze M, Minamino T, Hori M (1999) Intracoronary administration of ATP combined with direct PTC A reduces the size of myocardial infarction?: Cooperative Osaka Adenosine Trial for Acute Myocardial Infarction (abstract). J Am Coll Cardiol 33:376ACrossRefGoogle Scholar
  117. 117.
    Kumakura T, Takase K, Terada N, Gelefand EW (1995) Vesnarinone inhibits nucleoside and nucleobase transport. Life Sci 57:75–81CrossRefGoogle Scholar
  118. 118.
    Kitakaze M, Fong M, Yoshitake M, Minamino T, Node K, Okuyama Y, Terada N, Kambayashi T, Hori M (1997) Vesnarinone inhibits adenosine uptake in endothelial cells, smooth muscle cells and myocytes, and mediates cytoprotection. J Mol Cell Cardiol 29:3413–3417PubMedCrossRefGoogle Scholar
  119. 119.
    Kitakaze M, Minamino T, Funaya T, Node K, Shinozaki Y, Mori H, Hori M (1997) Vesnarinone limits infarct size via adenosine-dependent mechanisms in the canine heart. Circulation 95:2108–2114PubMedCrossRefGoogle Scholar
  120. 120.
    Cronstein BN, Naime D, Ostad E (1993) The antiinflammatory mechanism of methotrexate. J Clin Invest 92:2675–2682PubMedCrossRefGoogle Scholar
  121. 121.
    Morabito L, Montesinos MC, Schreibman DM, Baiter L, Thompson LF, Resta R, Carlin G, Huie MA, Cronstein BN (1998) Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-, 5′-nucleotidase-mediated conversion of adenine nucleotides. J Clin Invest 101:295–300PubMedCrossRefGoogle Scholar
  122. 122.
    Cronstein BN, Eberle MA, Gruber HE, Levin RI (1991) Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA 88:2441–2445PubMedCrossRefGoogle Scholar
  123. 123.
    Cronstein BN (1996) Molecular therapeutics. Methotrexate and its mechanism of action. Arthritis Rheum 39:1951–1960PubMedCrossRefGoogle Scholar
  124. 124.
    Packer M (1988) Neurohumoral interactions and adaptation in congestive heart failure. Circulation 77:721–730PubMedCrossRefGoogle Scholar
  125. 125.
    Waagstein F, Hjalmarson A, Varnauskas E, Wallentin E (1975) Effects of chronic β-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J 37:1022–1036PubMedCrossRefGoogle Scholar
  126. 126.
    The SOLVD Investigators (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327:685–691CrossRefGoogle Scholar
  127. 127.
    Matsumori A, Yamada T, Suzuki H, Matoba Y, Sasayama S (1994) Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 72:561–566PubMedCrossRefGoogle Scholar
  128. 128.
    Funaya H, Kitakaze M, Node K, Minamino T, Komamura K, Hori M (1997) Plasma adenosine levels increase in patients with chronic heart failure. Circulation 95:1363–1365PubMedCrossRefGoogle Scholar
  129. 129.
    Kitakaze M, Funaya H, Minamino T, Node K, Koretsune Y, Komamura K, Sato H, Hori M (1998) A new strategy for the treatment of chronic heart failure: elevation of plasma adenosine levels. Cardiovasc Drug Ther 12:307–309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Masafumi Kitakaze
    • 1
  • Masatsugu Hori
    • 1
  1. 1.Department of Internal Medicine and TherapeuticsOsaka University School of MedicineSuitaJapan

Personalised recommendations