Skip to main content
Log in

It is time to ask what adenosine can do for cardioprotection

  • Review
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Summary

Prevention and attenuation of ischemia and reperfusion injury in patients with acute coronary syndrome are critically important for cardiologists. To save these patients from deleterious ischemic insults, there are three different strategies. The first strategy is to increase ischemic tolerance before the onset of myocardial ischemia; the second is to attenuate the ischemia and reperfusion injury when an irreversible process of myocardial cellular injury occurs; the third is to treat the ischemic chronic heart failure that is caused by acute myocardial infarction. Adenosine, which is known to be cardioprotective against ischemia and reperfusion injury, may merit being used for these three cardioprotection strategies. First of all, adenosine induces collateral circulation via induction of growth factors, and triggers ischemic preconditioning, both of which induce ischemic tolerance in advance. Secondly, endogenous adenosine may mediate the infarct size-limiting effect of ischemic preconditioning, and exogenous adenosine is known to attenuate ischemia and reperfusion injury. Thirdly, we also revealed that adenosine metabolism is changed in patients with chronic heart failure, and increases in adenosine levels may attenuate the severity of ischemic heart failure. Therefore, adenosine therapy may improve the pathophysiology of ischemic chronic heart failure. Taking these factors together, we hereby propose potential tools for cardioprotection attributable to adenosine in ischemic hearts, and we postulate the use of adenosine therapy before, during, and after the onset of acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hori M, Kitakaze (1991) Adenosine, the heart and coronary circulation (brief review). Hypertension 18:565–574

    Article  PubMed  CAS  Google Scholar 

  2. Kitakaze M, Hori M, Kamada T (1993) The role of adenosine and its interaction with alpha-adrenoceptor activity in myocardial ischemic and reperfusion injury (brief review). Cardiovasc Res 27:18–27

    Article  PubMed  CAS  Google Scholar 

  3. Mubagwa K, Mullane K, Flameng W (1996) Role of adenosine in the heart and circulation. Cardiovasc Res 32:797–813

    PubMed  CAS  Google Scholar 

  4. Lagerkranser N, Sollevi A, Irestedt L, Tidgren B, Andreen M (1985) Renin release during controlled hypotension with sodium nitroprusside, nitroglycerin and adenosine: a comparative study in dogs. Acta Anaesthesiol Scand 29:45–49

    Article  PubMed  CAS  Google Scholar 

  5. Parmely MJ, Zhou WW, Edward CK III, Borcherding DR, Silverstein R, Morrison DC (1993) Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrotic factor-α production and protect mice against endotoxin challenge. J Immunol 151:389–396

    PubMed  CAS  Google Scholar 

  6. Fischer S, Knoll R, Renz D, Karliczek GF, Schaper W (1997) Role of adenosine in the hypoxic induction of vascular endothelial growth factor in porcine brain derived microvascular endothelial cells. Endothelium 1997;5(4):373

    Article  Google Scholar 

  7. Dusseuau JW, Hutchins M, Malbasa DS (1986) Stimulation of angiogenesis by adenosine on the chick chorioallantonic membrane. Circ Res 59:163–170

    Article  Google Scholar 

  8. Meinnger CJ, Schelling ME, Granger HJ (1988) Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am J Physiol 255:H554–H562

    Google Scholar 

  9. Meinnger CJ, Granger HJ (1990) Mechanisms leading to adenosine-stimulated proliferation of microvascular endothelial cells. Am J Physiol 258:H198–H206

    Google Scholar 

  10. Ohisalo JJ (1987) Regulatory functions of adenosine. Med Biol 65:181–191

    PubMed  CAS  Google Scholar 

  11. Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74:5482–5486

    Article  PubMed  CAS  Google Scholar 

  12. Londos C, Cooper DMF, Schlegel W, Rodbell M (1978) Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci USA 75:5362–5366

    Article  PubMed  CAS  Google Scholar 

  13. Olsson RA, Pearson JD (1990) Cardiovascular purinoceptors. Physiol Rev 70:761–845

    PubMed  CAS  Google Scholar 

  14. Degenring FH (1976) The effect of acidosis and alkalosis on coronary flow and cardiac nucleotide metabolism. Basic Res Cardiol 71:287–290

    Article  PubMed  CAS  Google Scholar 

  15. Hori M, Kitakaze M, Tamai J, Iwakura K, Kitabatake A, Inoue M, Kamada T (1989) α2-Adrenoceptor stimulation can augment coronary vasodilation maximally induced by adenosine in dogs. Am J Physiol 257:H132–H140

    PubMed  CAS  Google Scholar 

  16. Hori M, Kitakaze M, Tamai J, Koretsune Y, Iwai K, Iwakura K, Kagiya T, Kitabatake A, Inoue M, Kamada T (1988) α2-Adrenoceptor activity exerts dual control of coronary blood flow in canine coronary artery. Am J Physiol 255:H250–H260

    PubMed  CAS  Google Scholar 

  17. Kitakaze M, Hori M, Gotoh K, Sato H, Iwakura K, Kitabatake A, Inoue M, Kamada T (1989) Beneficial effects of α2-adrenoceptor activity on ischemic myocardium during coronary hypoperfusion in dogs. Circ Res 65:1632–1645

    Article  PubMed  CAS  Google Scholar 

  18. Nayler WG, Price JM, Lowe TE (1967) Inhibition of adenosine-induced coronary vasodilation. Cardiovasc Res 1:63–66

    Article  PubMed  CAS  Google Scholar 

  19. Achterberg PW, de Tombep P, Harmsen E, de Jong JW (1985) Myocardial S-adenosylhomocysteine hydrolase is important for adenosine production during norrrioxia. Biochim Biophys Acta 840:393–400

    Article  PubMed  CAS  Google Scholar 

  20. Sparks HV Jr, Bardenheuer H (1986) Regulation of adenosine formation in the heart. Circ Res 58:193–201

    Article  PubMed  CAS  Google Scholar 

  21. Llyod GE, Scharader J (1987) The importance of the transmethylation pathway for adenosine metabolism in the heart. In: Gerlach E, Becker BF. (eds) Topics and perspectives in adenosine research. Springer, Berlin Heidelberg, pp 199–207

    Chapter  Google Scholar 

  22. Deussen A, Borst M, Schrader J (1988) Formation of adenosylhomocysteine in the heart. I: an index intracellular adenosine. Circ Res 63:240–249

    Article  PubMed  CAS  Google Scholar 

  23. Rubio R, Wiedmeier VT, Berne RM (1974) Relationship between coronary flow and adenosine production and release. J Mol Cell Cardiol 6:561–566

    Article  PubMed  CAS  Google Scholar 

  24. Wadsworth RM (1989) The effects of aminophylline on the increased myocardial blood flow produced by systemic hypoxia or by coronary artery occlusion. Eur Pharmacol 20:130–132

    Article  Google Scholar 

  25. Wei HM, Kang YH, Merrill GF (1989) Canine coronary vasodepressor response to hypoxia are abolished by 8-phenyltheophylline. Am J Physiol 257:H1043–H1048

    PubMed  CAS  Google Scholar 

  26. Curnish RR, Berne RM, Rubio R (1972) Effects of aminophylline on myocardial reactive hyperemia. Proc Soc Exp Biol Med 141:593–598

    PubMed  CAS  Google Scholar 

  27. Merrill GF, Downey F, Jones CE (1986) Adenosine deaminase attenuates canine coronary vasodilation during systemic hypoxia. Am J Physiol 250:H579–H583

    PubMed  CAS  Google Scholar 

  28. Wei HM, Kang YH, Merill GF (1988) Coronary vasodilation during global myocardial hypoxia: Effect of adenosine deaminase. Am J Physiol 254:H1004–H1009

    PubMed  CAS  Google Scholar 

  29. Rubio R, Berne RM (1975) Regulation of coronary blood flow. Prog Cardiovasc Dis 8:105–122

    Article  Google Scholar 

  30. Kitakaze M, Hori M, Tamai J, Iwakura K, Koretsune Y, Kagiya T, Iwai K, Kitabatake A, Inoue M, Kamada T (1987) α1-Adrenoceptor activity regulates release of adenosine from the ischemic myocardium in dogs. Circ Res 60:631–639

    Article  PubMed  CAS  Google Scholar 

  31. Hori M, Tamai J, Kitakaze M, Iwakura K, Gotoh K, Iwai K, Koretsune Y, Kagiya T, Kitabatake A, Kamada T (1989) Adenosine-induced hyperemia attenuates myocardial ischemia in coronary microembolization in dogs. Am J Physiol 257:H244–H251

    PubMed  CAS  Google Scholar 

  32. Buxton ILO, Walther J, Westfall DP (1990) Purinergic mechanisms in cardiac blood vessels: stimulation of endothelial cell alpha receptors in vitro by the neurotransmitter norepinephrine leads to the rapid release of ATP and its subsequent breakdown to adenosine (abstract). Heart Vessels 4 (Suppl):27

    Google Scholar 

  33. Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Okazaki Y, Node K, Komamura K, Iwakura K, Inoue M, Kamada T (1995) α1-Adrenoceptor activation increases ectosolic 5′-nucleotidase activity and adenosine release in rat cardiomyocytes by activating protein kinase C. Circulation 91:2226–2234

    Article  PubMed  CAS  Google Scholar 

  34. Kitakaze M, Minamino T, Node K, Komamura K, Inoue M, Hori M, Kamada T (1996) Activation of ecto-5′-nucleotidase by protein kinase C attenuates irreversible cellular injury due to hypoxia and reoxygenation in rat cardiomyocytes. J Mol Cell Cardiol 28:1945–1955

    Article  PubMed  CAS  Google Scholar 

  35. Hermann SC, Feigl EO (1992) Adrenergic blockade blunts adenosine concentration and coronary vasodilation during hypoxia. Circ Res 70:1203–1216

    Article  Google Scholar 

  36. Watanabe E, Smith DM, Sun J, Smart FW, Delcarpio JB, Roberts TB, Van Meter CH Jr, Claycomb WC (1998) Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res Cardiol 93:30–37

    Article  PubMed  CAS  Google Scholar 

  37. Schaper W (1991) Angiogenesis in the adult heart. Basic Res Cardiol 86 Suppl 2:51–56

    PubMed  Google Scholar 

  38. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98:2800–2804

    Article  PubMed  CAS  Google Scholar 

  39. Yanagisawa MA, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C, Ito H (1992) Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257:1401–1403

    Article  Google Scholar 

  40. Abramovitch R, Neeman M, Reich R, Stein I, Keshet E, Abraham J, Solomon A, Marikovsky M (1998) Intercellular communication between vascular smooth muscle and endothelial cells mediated by heparin-binding epidermal growth factor-like growth factor and vascular endothelial growth factor. FEBS Lett 425:441–447

    Article  PubMed  CAS  Google Scholar 

  41. Sasayama S, Fujita M (1992) Recent insights into coronary collateral circulation. Circulation 85:1197–1204

    Article  PubMed  CAS  Google Scholar 

  42. Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N, Nishikawa SI (1999) Maturation of embryonic stem cells into endothelial cells in an In vitro model of vasculogenesis. Blood 93(4):1253–1263

    PubMed  CAS  Google Scholar 

  43. Symons JD, Firoozmand E, Longhurst JC (1993) Repeated dipyridamole administration enhances collateral-dependent flow and regional function during exercise. A role for adenosine. Circ Res 73:503–513

    Article  PubMed  CAS  Google Scholar 

  44. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  45. Liu GS, Thornton J, Van Winkle DM, Stanley AWH, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356

    Article  PubMed  CAS  Google Scholar 

  46. Miura T, Ogawa T, Iwamoto T, Shimamoto K, Iimura O (1992) Dipyridamole potentiates the myocardial infarct size-limiting effect of ischemic preconditioning. Circulation 86:979–985

    Article  PubMed  CAS  Google Scholar 

  47. Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H, Shinozaki Y, Chujo M, Mori M, Inoue M, Kamada T (1994) The infarct size-limiting effect of ischemic preconditioning is blunted by inhibition of 5′-nucleotidase activity and attenuation of adenosine release. Circulation 89:1237–1246

    Article  PubMed  CAS  Google Scholar 

  48. Mitchell MB, Meng X, Ao L, Brown JM, Harken AH, Banerjee A (1995) Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 76:73–81

    Article  PubMed  CAS  Google Scholar 

  49. Kitakaze M, Node K, Minamino T, Komamura K, Funaya H, Shinozaki Y, Chujo M, Mori H, Inoue M, Hori M, Kamada T (1996) The role of activation of protein kinase C in the infarct size-limiting effect of ischemic preconditioning through activation of ecto-5′-nucleotidase. Circulation 93:781–791

    Article  PubMed  CAS  Google Scholar 

  50. Kitakaze M, Funaya H, Minamino T, Node K, Sato H, Ueda Y, Okuyama Y, Kuzuya T, Hori M, Yoshida K (1997) Role of Protein kinase C-α in activation of ecto-5′-nucleotidase in the preconditioned canine myocardium. Biochem Biophys Res Commun 239:171–175

    Article  PubMed  CAS  Google Scholar 

  51. Tsuchida Am Liu Y, Liu GS, Cohen MV, Downey JM (1994) α1-Adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res 75:576–585

    Article  Google Scholar 

  52. Armstrong S, Ganote CE (1995) In vitro ischaemic preconditioning of isolated rabbit cardiomyocytes: effect of selective adenosine receptor blockade and calphostin C. Cardiovasc Res 29:647–652

    PubMed  CAS  Google Scholar 

  53. Marbar MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress associated with resistance to myocardial infarction. Circulation 83:13–25

    Google Scholar 

  54. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M (1993) Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:1293–1299

    Article  PubMed  CAS  Google Scholar 

  55. Sakaguchi T, Sawa Y, Misahimura M, Amemiya A, Ueda H, Ueno Y, Matsuda H (1998) Ecto-5′-nucleotidase activated by heat shock protein 70 attenuates ischemia and reperfusion injury in myocardium. Evidence for a mechanism of second window protection Circulation 98:I–527

    Google Scholar 

  56. Kitakaze M, Hori M, Takashima S, Iwai K, Sato H, Inoue M, Kitabatake K, Kamada T (1992) Superoxide dismutase enhances ischemia-induced reactive hyperemic flow and adenosine release in dogs: A role of 5′-nucleotidase activity. Circ Res 71:558–566

    Article  PubMed  CAS  Google Scholar 

  57. Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H, Shinozaki Y, Chujo M, Mori H, Inoue M, Kamada T (1994) Alpha1-adrenoceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5′-nucleotidase activity. J Clin Invest 93:2197–2205

    Article  PubMed  CAS  Google Scholar 

  58. Murray KT, Fahrig SA, Deal KK, Po SS, Hu NN, Snyders DJ, Tamkun MM, Bennett PB (1994) Modulation of an inactivating human cardiac K+ channel by protein kinase C. Circ Res 75:999–1005

    Article  PubMed  CAS  Google Scholar 

  59. Sato T, O’Rourke B, Marban E (1998) Modulation of mitochondrial ATP-dependent K channels by protein kinase C. Circ Res 83:110–114

    Article  PubMed  CAS  Google Scholar 

  60. Liu Y, Sato T, O’Rourke B, Marban E (1998) Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97:2463–2469

    Article  PubMed  CAS  Google Scholar 

  61. Kitakaze M, Hori M, Takashima S, Sato H, Inoue M, Kamada T (1993) Ischemic preconditioning increases adenosine release and 5′-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Implication for myocardial salvage. Circulation 87:208–215

    Article  PubMed  CAS  Google Scholar 

  62. Zahler S, Becker BF, Raschke P, Gerlach E (1994) Stimulation of endothelial adenosine Ai receptors enhances adhesion of neutrophils in intact guinea pig coronary system. Cardiovasc Res 28:1366–1372

    Article  PubMed  CAS  Google Scholar 

  63. Zhao J, Renner O, Latchman DS, Marber M (1997) The role of adenosine in the mediation of the resistance to simulated ischemia that follows expression of constitu-tively active PDC-δ. Circulation 96:I–450

    Google Scholar 

  64. Zhao J, Heads RJ, Wightman L, Marber M (1998) PKC-mediated cardioprotection requires adenosine receptor reoccupation (abstract). Circulation 98:I–71

    Google Scholar 

  65. Van Wylen DGL (1994). Effects of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during myocardial ischemia Circulation 89:2283–2289

    Article  PubMed  Google Scholar 

  66. Przyklenk K, Hata K, Zhas L, Kloner RA, Elliott GT (1997) Disparate effects of preconditioning and MLA on 5′-NT and adenosine levels during coronary occlusion. Am J Physiol 273:H945–H951

    PubMed  CAS  Google Scholar 

  67. Wolfe CI, Sievers RE, Visseren FLJ, Donnelly TJ (1993) Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment. Circulation 87:881–892

    Article  PubMed  CAS  Google Scholar 

  68. Murry CE, Richard VJ, Reimer KA, Jennings RB (1990) Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Am J Physiol 260:H796–H804

    Google Scholar 

  69. Minamino T, Kitakaze M, Morioka T, Node K, Komamura K, Takeda H, Inoue M, Hori M, Kamada T (1996) Cardioprotection due to ischemic preconditioning correlates with increased of ecto-5′-nucleotidase activity. Am J Physiol 270:H238–H244

    PubMed  CAS  Google Scholar 

  70. Kitakaze M, Mori H, Sakamoto H, Inoue M (1995) Disappearance of infarct size-limiting effect of ischemic preconditioning is attributable to dephosphorylation process of ecto-5′-nucleotidase. Circulation 92 (Suppl I):I–524

    Google Scholar 

  71. Minamino T, Kitakaze M, Node K, Komamura K, Shinozaki Y, Chujo M, Mori H, Hori M, Kamada T (1994) Potentiation of adenosine release slows the natural decay of cardioprotection of ischemic preconditioning: role of activation of ectosolic 5′-nucleotidase (abstract). Eur Heart J 15 (Abstract Suppl):553

    Google Scholar 

  72. Olafsson B, Forman MB, Puett DW, Pou A, Cates CU, Friesinger GC, Virmani R (1987) Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation 76:1135–1145

    Article  PubMed  CAS  Google Scholar 

  73. Al-Awqati Q (1995) regulation of ion channels by ABC transporter that secrete ATP. Science 269:805–806

    Article  PubMed  CAS  Google Scholar 

  74. Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    PubMed  CAS  Google Scholar 

  75. Harder DR, Belardinelli L, Sperelakis N, Rubio R, Berne RM (1979) Differential effects of adenosine and nitroglycerin on the action potential of large and small coronary arteries. Circ Res 44:176–182

    Article  PubMed  CAS  Google Scholar 

  76. Fenton RA, Rubio BR, Berne AM (1982) Effect of adenosine on calcium uptake by intact and cultured vascular smooth muscle. Am J Physiol 242:H797–H804

    PubMed  CAS  Google Scholar 

  77. Aversano T, Ouyang P, Silverman H (1991) Blockade of the ATP-sensitive potassium channel modulates reactive hyperemia in the canine circulation. Circ Res 69:618–622

    Article  PubMed  CAS  Google Scholar 

  78. Komaru T, Tanikawa T, Sugimura A, Kumagai T, Sato K, Kanatsuka H, Shirato K (1997) Mechanisms of coronary microvascular dilation induced by the activation of pertussis toxin-sensitive G proteins are vessel-size dependent. Heterogeneous involvement of nitric oxide pathway and ATP-sensitive K+ channels. Circ Res 80:1–10

    Article  PubMed  CAS  Google Scholar 

  79. Nees S, Herzog V, Becker BF, Bock M, Rosiers CD, Gerlach E (1985) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol 80:515–529

    Article  PubMed  CAS  Google Scholar 

  80. Matsuda H, Imai S (1990) Effects of adenosine and adenine nucleotides on the diameter of the isolated perfused pig coronary artery (abstract). Jpn J Pharmacol 52 (Suppl II):116

    Google Scholar 

  81. Kurtz A (1987) Adenosine stimulates guanylate cyclase activity in vascular smooth muscle cells. J Biol Chem 262:6296–6300

    PubMed  CAS  Google Scholar 

  82. Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischemic brain: effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35:262–271

    Article  CAS  Google Scholar 

  83. Kitakaze M, Hori M, Sato H, Takashima S, Inoue M, Kitabatake A, Kamada T (1991) Endogenous adenosine inhibits platelet aggregation during myocardial ischemia in dogs. Circ Res 69:1402–1408

    Article  PubMed  CAS  Google Scholar 

  84. Minamino T, Kitakaze M, Asanuma H, Tomiyama Y, Shiraga M, Sato H, Ueda Y, Funaya H, Kuzuya T, Matsuzawa Y, Hori M (1998) Endogenous adenosine inhibits P-selectin-dependent formation of coronary thrombi during hypoperfusion in dogs. J Clin Invest 101:1643–1653

    Article  PubMed  CAS  Google Scholar 

  85. Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R (1986) Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 78:760–770

    Article  PubMed  CAS  Google Scholar 

  86. Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R (1986) Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J Exp Med 158:1160–1177

    Article  Google Scholar 

  87. Cronstein BN (1991) Adenosine is an autacoid of inflammation: effects of adenosine on neutrophil function. In: Imai S, Nakazawa M (eds) Role of adenosine and adenine nucleotides in the biological system. Elsevier, Amsterdam, pp 515–520

    Google Scholar 

  88. Kitakaze M, Hori M, Morioka T, Takashima S, Sato H, Minamino T, Inoue M, Kamada T (1993) Attenuation of 5′-nucleotides and adenosine release in activated human polymorphonuclear leukocytes. Circ Res 73:524–533

    Article  PubMed  CAS  Google Scholar 

  89. Belardinelli L, Isenberg G (1983) Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 53:287–297

    Article  PubMed  CAS  Google Scholar 

  90. Sato H, Hori M, Kitakaze M, Takashima S, Inoue M, Kitabatake A, Kamada T (1992) Endogenous adenosine attenuates beta-adrenoceptor-mediated inotropic response in the hypoperfused canine myocardium. Circulation 85:1594–1603

    Article  PubMed  CAS  Google Scholar 

  91. Richardt G, Wassa W, Kranzhofer R, Mayer E, Schöming A (1987) Adenosine inhibits exocytotic release of endogenous noradrenaline in rat heart: a protective mechanism in early myocardial ischemia. Circ Res 61:117–123

    Article  PubMed  CAS  Google Scholar 

  92. Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306

    Article  PubMed  CAS  Google Scholar 

  93. Kitakaze M, Takashima S, Sato H (1990) Stimulation of adenosine A1 and A2 receptors prevents myocardial stunning (abstract). Circulation 82:III–37

    Google Scholar 

  94. Kitakaze M, Hori M, Sato H, Iwakura K, Gotoh K, Inoue M, Kitabatake A, Kamada T (1991) Beneficial effects of α1-radrenoceptor activity on myocardial stunning in dogs. Circ Res 68:1322–1339

    Article  PubMed  CAS  Google Scholar 

  95. Isenberg G, Belardinelli L (1984) Ionic basis for the antagonism between adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 55:309–325

    Article  PubMed  CAS  Google Scholar 

  96. Isenberg G, Cerbai E, Klockner U (1987) Ionic channels and adenosine in isolated heart cells. In: Gerlach E, Becker BF (eds) Topics and perspective in cardiovascular research. Springer, Berlin, pp 323–335

    Google Scholar 

  97. Kitakaze M, Weisman HF, Marban E (1988) Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 77:685–695

    Article  PubMed  CAS  Google Scholar 

  98. Marban E, Kitakaze M, Koretsune Y, Yue DT, Chacko VP, Pike MM (1990) Quantification of [Ca2+]1 in per-fused hearts. Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied for the study of ischemia and reperfusion. Circ Res 66:1255–1267

    Article  PubMed  CAS  Google Scholar 

  99. Agarwal KC (1987) Adenosine and platelet function. In: Stefanovich V, Okayuz-Baklouti I (eds) Role of adenosine in cerebral metabolism and blood flow. VNU Science, Utrecht, pp 107–124

    Google Scholar 

  100. Newman WH, Becker BF, Heier M, Nees S, Gerlach E (1988) Endothelium-mediated coronary dilatation by adenosine does not depend on endothelial adenylate cyclase activation: studies in isolated guinea pig hearts. Pflügers Arch 413:1–7

    Article  PubMed  CAS  Google Scholar 

  101. Hori M, Inoue M, Kitakaze M, Koretsune Y, Iwai K, Tamai J, Ito H, Kitabatake A, Sato T, Kamada T (1986) Role of adenosine in hyperemic response of coronary blood flow in microembolization. Am J Physiol 250: H509–H518

    PubMed  CAS  Google Scholar 

  102. Hori M, Gotoh K, Kitakaze M, Iwai K, Iwakura K, Sato H, Koretsune Y, Kitabatake A, Inoue M, Kamada T (1991) Role of oxygen-mediated free radicals in myocardial edema and ischemia in coronary microembolization. Circulation 84:828-884

    Google Scholar 

  103. Kitakaze M, Hori M, Takasima S, Morioka T, Minamino T, Inoue M, Kamada T (1993) Superoxide dismutase protects the degradation of myocardial ectosolic 5′-nucleotidase and increases adenosine release during ischemia and reperfusion. Biorheology 30:359–371

    PubMed  CAS  Google Scholar 

  104. Takeo S, Tanonaka K, Miyake K, Imago M (1988) Adenine nucleotide metabolites are beneficial for recovery of cardiac contractile force after hypoxia. J Mol Cell Cardiol 20:187–199

    Article  PubMed  CAS  Google Scholar 

  105. Engler R (1987) Consequences of activation and adenosine-mediated inhibition of granulocytes during myocardial ischemia. Fed Proc 46:2407–2412

    PubMed  CAS  Google Scholar 

  106. Foker JE, Einzig E, Wang T (1980) Adenosine metabolism and myocardial preservation. J Thorac Cardiovasc Surg 80:506–516

    PubMed  CAS  Google Scholar 

  107. Reibel DK, Rovette MJ (1979) Myocardial adenosine salvage rates and restoration of ATP content following ischemia. Am J Physiol 237:H247–H252

    PubMed  CAS  Google Scholar 

  108. Isselhard W, Eitenmuller J, Maurer W, DeVreese A, Reinke H, Czerniak A, Struz J, Herb HG (1980) Increase in myocardial adenine nucleotides induced by adenosine: dosage, mode of application and duration, species differences. J Moll Cell Cardiol 12:619–634

    Article  CAS  Google Scholar 

  109. Mauser M, Hoffmeister HM, Nienber C, Schaper W (1985) Influence of ribose, adenosine, and “AICAR” on the rate of myocardial adenosine triphosphate synthesis during reperfusion after coronary artery occlusion in the dog. Circ Res 56:220–230

    Article  PubMed  CAS  Google Scholar 

  110. Dole VP (1962) Insulin-like actions of ribonucleic acid, adenylic acid, and adenosine. J Biochem Chem 237: 2758–2762

    CAS  Google Scholar 

  111. Green A, Newsholme EA (1979) Sensitivity of glucose uptake and lipolysis of white adipoytes of the rat to insulin and effects of some metabolites. Biochem J 180:365–370

    PubMed  CAS  Google Scholar 

  112. Schwabe U, Schonhofer PS, Ebert R (1974) Facilitation by adenosine of the action of insulin on the accumulation of adenosine 3′,5′-monophosphate, lipolysis, and glucose oxidation in isolated fat cells. Eur J Biochem 46:536–545

    Article  Google Scholar 

  113. Raberger G, Kraupp O, Stuhlinger W Nell G, Chirikdjiam JJ (1970) The effects of an intracoronary infusion of adenosine on cardiac performance, blood supply and myocardial metabolism in dogs. Pflügers Arch 317:20–34

    Article  PubMed  CAS  Google Scholar 

  114. Mainwaring RD, Mentzer RM Jr (1986) Effects of dipyridamole on myocardial glucose uptake in the newborn lamb. J Surg Res 40:528–533

    Article  PubMed  CAS  Google Scholar 

  115. Mashaffey K, Puma JA, Barbagelata A, Casas CA, Lambe L, Orlandi C, Gibbons RJ, Califf RM, Granger CB (1997) Does adenosine in conjugation with thrombosis reduce infarct size? Results from the controlled, randomized AMISTAD Trial. Circulation 6:I-206–I-207

    Google Scholar 

  116. Nakayama H, Nanto S, Phara T, Morozumi T, Nagata S, Hoki N, Kitakaze M, Minamino T, Hori M (1999) Intracoronary administration of ATP combined with direct PTC A reduces the size of myocardial infarction?: Cooperative Osaka Adenosine Trial for Acute Myocardial Infarction (abstract). J Am Coll Cardiol 33:376A

    Article  Google Scholar 

  117. Kumakura T, Takase K, Terada N, Gelefand EW (1995) Vesnarinone inhibits nucleoside and nucleobase transport. Life Sci 57:75–81

    Article  Google Scholar 

  118. Kitakaze M, Fong M, Yoshitake M, Minamino T, Node K, Okuyama Y, Terada N, Kambayashi T, Hori M (1997) Vesnarinone inhibits adenosine uptake in endothelial cells, smooth muscle cells and myocytes, and mediates cytoprotection. J Mol Cell Cardiol 29:3413–3417

    Article  PubMed  CAS  Google Scholar 

  119. Kitakaze M, Minamino T, Funaya T, Node K, Shinozaki Y, Mori H, Hori M (1997) Vesnarinone limits infarct size via adenosine-dependent mechanisms in the canine heart. Circulation 95:2108–2114

    Article  PubMed  CAS  Google Scholar 

  120. Cronstein BN, Naime D, Ostad E (1993) The antiinflammatory mechanism of methotrexate. J Clin Invest 92:2675–2682

    Article  PubMed  CAS  Google Scholar 

  121. Morabito L, Montesinos MC, Schreibman DM, Baiter L, Thompson LF, Resta R, Carlin G, Huie MA, Cronstein BN (1998) Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-, 5′-nucleotidase-mediated conversion of adenine nucleotides. J Clin Invest 101:295–300

    Article  PubMed  CAS  Google Scholar 

  122. Cronstein BN, Eberle MA, Gruber HE, Levin RI (1991) Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA 88:2441–2445

    Article  PubMed  CAS  Google Scholar 

  123. Cronstein BN (1996) Molecular therapeutics. Methotrexate and its mechanism of action. Arthritis Rheum 39:1951–1960

    Article  PubMed  CAS  Google Scholar 

  124. Packer M (1988) Neurohumoral interactions and adaptation in congestive heart failure. Circulation 77:721–730

    Article  PubMed  CAS  Google Scholar 

  125. Waagstein F, Hjalmarson A, Varnauskas E, Wallentin E (1975) Effects of chronic β-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J 37:1022–1036

    Article  PubMed  CAS  Google Scholar 

  126. The SOLVD Investigators (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327:685–691

    Article  Google Scholar 

  127. Matsumori A, Yamada T, Suzuki H, Matoba Y, Sasayama S (1994) Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 72:561–566

    Article  PubMed  CAS  Google Scholar 

  128. Funaya H, Kitakaze M, Node K, Minamino T, Komamura K, Hori M (1997) Plasma adenosine levels increase in patients with chronic heart failure. Circulation 95:1363–1365

    Article  PubMed  CAS  Google Scholar 

  129. Kitakaze M, Funaya H, Minamino T, Node K, Koretsune Y, Komamura K, Sato H, Hori M (1998) A new strategy for the treatment of chronic heart failure: elevation of plasma adenosine levels. Cardiovasc Drug Ther 12:307–309

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Grants-in-aid for Scientific Research (nos. 10557068 and 10670649) from the Ministry of Education, Science, and Culture, Japan, and in part by grants from the Smoking Research Foundation, Japan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitakaze, M., Hori, M. It is time to ask what adenosine can do for cardioprotection. Heart and Vessels 13, 211–228 (1998). https://doi.org/10.1007/BF03257244

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03257244

Key words

Navigation