Molecular Diagnosis & Therapy

, Volume 16, Issue 2, pp 63–77 | Cite as

Molecular Diagnosis and Management of Viral Infections in Hematopoietic Stem Cell Transplant Recipients

  • Sabine Breuer
  • Margit Rauch
  • Susanne Matthes-Martin
  • Thomas Lion
Review Article


Viral infections after allogeneic hematopoietic stem cell transplantation (HSCT) are important complications associated with high morbidity and mortality. In this setting, reactivations of persisting latent viral pathogens from donor and/or recipient cells play a central role whereas the sterile environment of transplant units renders new infections less likely. The viruses currently regarded as most relevant in the HSCT setting include particularly the herpes virus family—specifically cytomegalovirus (CMV), Epstein-Barr virus (EBV), and human herpesvirus 6 (HHV-6) —as well as human adenoviruses (AdVs) and the polyoma virus BK (BKV). Timely detection and monitoring of virus copy numbers are prerequisites for successful preemptive treatment approaches. Pre- and post-transplant surveillance by sensitive and quantitative molecular methods has therefore become an essential part of the diagnostic routine. In this review, we discuss diagnostic aspects and the clinical management of the most important viral infections in HSCT recipients, with a focus on pediatric patients.


Hematopoietic Stem Cell Transplantation Ganciclovir Varicella Zoster Virus Allogeneic Hematopoietic Stem Cell Transplantation Cidofovir 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Sabine Breuer and Margit Rauch contributed equally to the manuscript. There was no funding provided for preparation of the paper. The authors declare no conflicts of interest.


  1. 1.
    Jacobson CA, Turki AT, McDonough SM, et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. Epub 2011 Aug 26Google Scholar
  2. 2.
    Brown JA, Boussiotis VA. Umbilical cord blood transplantation: basic biology and clinical challenges to immune reconstitution. Clin Immunol 2008; 127(3): 286–97CrossRefPubMedGoogle Scholar
  3. 3.
    Ballen KK, Spitzer TR. The great debate: haploidentical or cord blood transplant. Bone Marrow Transplant 2011; 46(3): 323–9CrossRefPubMedGoogle Scholar
  4. 4.
    Huang XJ, Chang YJ. Unmanipulated HLA-mismatched/haploidentical blood and marrow hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2011; 17(2): 197–204CrossRefPubMedGoogle Scholar
  5. 5.
    Chakrabarti S, Mautner V, Osman H, et al. Adenovirus infections following allogeneic stem cell transplantation: incidence and outcome in relation to graft manipulation, immunosuppression, and immune recovery. Blood 2002; 100(5): 1619–27CrossRefPubMedGoogle Scholar
  6. 6.
    Mori T, Kato J. Cytomegalovirus infection/disease after hematopoietic stem cell transplantation. Int J Hematol 2010; 91(4): 588–95CrossRefPubMedGoogle Scholar
  7. 7.
    Suparno C, Milligan DW, Moss PA, et al. Adenovirus infections in stem cell transplant recipients: recent developments in understanding of pathogenesis, diagnosis and management. Leuk Lymphoma 2004; 45(5): 873–85CrossRefPubMedGoogle Scholar
  8. 8.
    Meyers JD. Management of cytomegalovirus infection. Am J Med 1988; 85(2A): 102–6PubMedGoogle Scholar
  9. 9.
    Meyers JD, Ljungman P, Fisher LD. Cytomegalovirus excretion as a predictor of cytomegalovirus disease after marrow transplantation: importance of cytomegalovirus viremia. J Infect Dis 1990; 162(2): 373–80CrossRefPubMedGoogle Scholar
  10. 10.
    Leland DS, Ginocchio CC. Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev 2007; 20(1): 49–78CrossRefPubMedGoogle Scholar
  11. 11.
    VanBelkum A, Niesters HG. Nucleic acid amplification and related techniques in microbiological diagnostics and epidemiology. Cell Mol Biol (Noisy-le-grand) 1995; 41(5): 615–23Google Scholar
  12. 12.
    Watzinger F, Suda M, Preuner S, et al. Real-time quantitative PCR assays for detection and monitoring of pathogenic human viruses in immunosuppressed pediatric patients. J Clin Microbiol 2004; 42(11): 5189–98CrossRefPubMedGoogle Scholar
  13. 13.
    Ebner K, Suda M, Watzinger F, et al. Molecular detection and quantitative analysis of the entire spectrum of human adenoviruses by a two-reaction real-time PCR assay. J Clin Microbiol 2005; 43(7): 3049–53CrossRefPubMedGoogle Scholar
  14. 14.
    Niesters HG. Clinical virology in real time. J Clin Virol 2002; 25Suppl. 3: S3–12CrossRefPubMedGoogle Scholar
  15. 15.
    Ebner K, Rauch M, Preuner S, et al. Typing of human adenoviruses in specimens from immunosuppressed patients by PCR-fragment length analysis and real-time quantitative PCR. J Clin Microbiol 2006; 44(8): 2808–15CrossRefPubMedGoogle Scholar
  16. 16.
    Atkinson C, Emery VC. Cytomegalovirus quantification: where to next in optimising patient management? J Clin Virol 2011; 51(4): 223–8CrossRefPubMedGoogle Scholar
  17. 17.
    Ghaffari SH, Obeidi N, Dehghan M, et al. Monitoring of cytomegalovirus reactivation in bone marrow transplant recipients by real-time PCR. Pathol Oncol Res2008; 14(4): 399–409CrossRefGoogle Scholar
  18. 18.
    Perandin F, Cariani E, Pollara CP, et al. Comparison of commercial and inhouse real-time PCR assays for quantification of Epstein-Barr virus (EBV) DNA in plasma. BMC Microbiol 2007; 7: 22CrossRefPubMedGoogle Scholar
  19. 19.
    Boeckh M. The challenge of respiratory virus infections in hematopoietic cell transplant recipients. Br J Haematol 2008; 143 (4): 455-67Google Scholar
  20. 20.
    Ison MG. Respiratory viral infections in transplant recipients. Antivir Ther 2007; 12 (4 Pt B): 627–38PubMedGoogle Scholar
  21. 21.
    Lion T, Baumgartinger R, Watzinger F, et al. Molecular monitoring of adenovirus in peripheral blood after allogeneic bone marrow transplantation permits early diagnosis of disseminated disease. Blood 2003; 102(3): 1114–20CrossRefPubMedGoogle Scholar
  22. 22.
    vanTol MJ, Kroes AC, Schinkel J, et al. Adenovirus infection in paediatric stem cell transplant recipients: increased risk in young children with a delayed immune recovery. Bone Marrow Transplant 2005; 36(1): 39–50CrossRefPubMedGoogle Scholar
  23. 23.
    Lion T, Kosulin K, Landlinger C, et al. Monitoring of adenovirus load in stool by real-time PCR permits early detection of impending invasive infection in patients after allogeneic stem cell transplantation. Leukemia 2010; 24(4): 706–14CrossRefPubMedGoogle Scholar
  24. 24.
    Bil-Lula I, Ussowicz M, Rybka B, et al. PCR diagnostics and monitoring of adenoviral infections in hematopoietic stem cell transplantation recipients. Arch Virol 2010; 155(12): 2007–15CrossRefPubMedGoogle Scholar
  25. 25.
    Guerin-El Khourouj V, Dalle JH, Pedron B, et al. Quantitative and qualitative CD4 T cell immune responses related to adenovirus DNAemia in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2011; 17(4): 476–85CrossRefPubMedGoogle Scholar
  26. 26.
    Kampmann B, Cubitt D, Walls T, et al. Improved outcome for children with disseminated adenoviral infection following allogeneic stem cell transplantation. Br J Haematol 2005; 130(4): 595–603CrossRefPubMedGoogle Scholar
  27. 27.
    Kullberg-Lindh C, Mellgren K, Friman V, et al. Opportunistic virus DNA levels after pediatric stem cell transplantation: serostatus matching, anti-thymocyte globulin, and total body irradiation are additive risk factors. Transpl Infect Dis 2011; 13(2): 122–30CrossRefPubMedGoogle Scholar
  28. 28.
    Myers GD, Krance RA, Weiss H, et al. Adenovirus infection rates in pediatric recipients of alternate donor allogeneic bone marrow transplants receiving either antithymocyte globulin (ATG) or alemtuzumab (Campath). Bone Marrow Transplant 2005; 36(11): 1001–8CrossRefPubMedGoogle Scholar
  29. 29.
    Sivaprakasam P, Carr TF, Coussons M, et al. Improved outcome from invasive adenovirus infection in pediatric patients after hemopoietic stem cell transplantation using intensive clinical surveillance and early intervention. J Pediatr Hematol Oncol 2007; 29(2): 81–5CrossRefPubMedGoogle Scholar
  30. 30.
    Verdeguer A, deHeredia CD, Gonzalez M, et al. Observational prospective study of viral infections in children undergoing allogeneic hematopoietic cell transplantation: a 3-year GETMON experience. Bone Marrow Transplant 2011; 46(1): 119–24CrossRefPubMedGoogle Scholar
  31. 31.
    Walls T, Hawrami K, Ushiro-Lumb I, et al. Adenovirus infection after pediatric bone marrow transplantation: is treatment always necessary? Clin Infect Dis 2005; 40(9): 1244–9CrossRefPubMedGoogle Scholar
  32. 32.
    Yusuf U, Hale GA, Carr J, et al. Cidofovir for the treatment of adenoviral infection in pediatric hematopoietic stem cell transplant patients. Transplantation 2006; 81(10): 1398–404CrossRefPubMedGoogle Scholar
  33. 33.
    Baldwin A, Kingman H, Darville M, et al. Outcome and clinical course of 100 patients with adenovirus infection following bone marrow transplantation. Bone Marrow Transplant 2000; 26(12): 1333–8CrossRefPubMedGoogle Scholar
  34. 34.
    Avivi I, Chakrabarti S, Milligan DW, et al. Incidence and outcome of adenovirus disease in transplant recipients after reduced-intensity conditioning with alemtuzumab. Biol Blood Marrow Transplant 2004; 10(3): 186–94CrossRefPubMedGoogle Scholar
  35. 35.
    Symeonidis N, Jakubowski A, Pierre-Louis S, et al. Invasive adenoviral infections in T-cell-depleted allogeneic hematopoietic stem cell transplantation: high mortality in the era of cidofovir. Transpl Infect Dis 2007; 9(2): 108–13CrossRefPubMedGoogle Scholar
  36. 36.
    Runde V, Ross S, Trenschel R, et al. Adenoviral infection after allogeneic stem cell transplantation (SCT): report on 130 patients from a single SCT unit involved in a prospective multi center surveillance study. Bone Marrow Transplant 2001; 28(1): 51–7CrossRefPubMedGoogle Scholar
  37. 37.
    Flomenberg P, Babbitt J, Drobyski WR, et al. Increasing incidence of adenovirus disease in bone marrow transplant recipients. J Infect Dis 1994; 169(4): 775–81CrossRefPubMedGoogle Scholar
  38. 38.
    Robin M, Marque-Juillet S, Scieux C, et al. Disseminated adenovirus infections after allogeneic hematopoietic stem cell transplantation: incidence, risk factors and outcome. Haematologica 2007; 92(9): 1254–7CrossRefPubMedGoogle Scholar
  39. 39.
    Muller WJ, Levin MJ, Shin YK, et al. Clinical and in vitro evaluation of cidofovir for treatment of adenovirus infection in pediatric hematopoietic stem cell transplant recipients. Clin Infect Dis 2005; 41(12): 1812–6CrossRefPubMedGoogle Scholar
  40. 40.
    Seto D, Chodosh J, Brister JR, et al. Using the whole-genome sequence to characterize and name human adenoviruses. J Virol 2011; 85(11): 5701–2CrossRefPubMedGoogle Scholar
  41. 41.
    Boeckh M, Ljungman P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood 2009; 113(23): 5711–9CrossRefPubMedGoogle Scholar
  42. 42.
    Feuchtinger T, Matthes-Martin S, Richard C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 2006; 134(1): 64–76CrossRefPubMedGoogle Scholar
  43. 43.
    Morfin F, Dupuis-Girod S, Mundweiler S, et al. In vitro susceptibility of adenovirus to antiviral drugs is species-dependent. Antivir Ther 2005; 10(2): 225–9PubMedGoogle Scholar
  44. 44.
    Naesens L, Lenaerts L, Andrei G, et al. Antiadenovirus activities of several classes of nucleoside and nucleotide analogues. Antimicrob Agents Chemother 2005; 49(3): 1010–6CrossRefPubMedGoogle Scholar
  45. 45.
    Kalpoe JS, van der Heiden PL, Barge RM, et al. Assessment of disseminated adenovirus infections using quantitative plasma PCR in adult allogeneic stem cell transplant recipients receiving reduced intensity or myeloablative conditioning. Eur J Haematol 2007; 78(4): 314–21CrossRefPubMedGoogle Scholar
  46. 46.
    Omar H, Hagglund H, Gustafsson-Jernberg A, et al. Targeted monitoring of patients at high risk of post-transplant lymphoproliferative disease by quantitative Epstein-Barr virus polymerase chain reaction. Transpl Infect Dis 2009; 11(5): 393–9CrossRefPubMedGoogle Scholar
  47. 47.
    Anderson EJ, Guzman-Cottrill JA, Kletzel M, et al. High-risk adenovirus-infected pediatric allogeneic hematopoietic progenitor cell transplant recipients and preemptive cidofovir therapy. Pediatr Transplant 2008; 12(2): 219–27CrossRefPubMedGoogle Scholar
  48. 48.
    Bhadri VA, Lee-Horn L, Shaw PJ. Safety and tolerability of cidofovir in high-risk pediatric patients. Transpl Infect Dis 2009; 11(4): 373–9CrossRefPubMedGoogle Scholar
  49. 49.
    Ljungman P, Brand R, Einsele H, et al. Donor CMV serologic status and outcome of CMV-seropositive recipients after unrelated donor stem cell transplantation: an EBMT megafile analysis. Blood 2003; 102(13): 4255–60CrossRefPubMedGoogle Scholar
  50. 50.
    Ebner K, Pinsker W, Lion T. Comparative sequence analysis of the hexon gene in the entire spectrum of human adenovirus serotypes: phylogenetic, taxonomic, and clinical implications. J Virol 2005; 79(20): 12635–42CrossRefPubMedGoogle Scholar
  51. 51.
    Lindemans CA, Leen AM, Boelens JJ. How I treat adenovirus in hematopoietic stem cell transplant recipients. Blood 2010; 116(25): 5476–85CrossRefPubMedGoogle Scholar
  52. 52.
    Chen FE, Liang RH, Lo JY, et al. Treatment of adenovirus-associated haemorrhagic cystitis with ganciclovir. Bone Marrow Transplant 1997; 20(11): 997–9CrossRefPubMedGoogle Scholar
  53. 53.
    Duggan JM, Farrehi J, Duderstadt S, et al. Treatment with ganciclovir of adenovirus pneumonia in a cardiac transplant patient. Am J Med 1997; 103(5): 439–40CrossRefPubMedGoogle Scholar
  54. 54.
    Gavin PJ, Katz BZ. Intravenous ribavirin treatment for severe adenovirus disease in immunocompromised children. Pediatrics 2002; 110 (1 Pt 1):e9CrossRefPubMedGoogle Scholar
  55. 55.
    Lankester AC, Heemskerk B, Claas EC, et al. Effect of ribavirin on the plasma viral DNA load in patients with disseminating adenovirus infection. Clin Infect Dis 2004; 38(11): 1521–5CrossRefPubMedGoogle Scholar
  56. 56.
    Morfin F, Dupuis-Girod S, Frobert E, et al. Differential susceptibility of adenovirus clinical isolates to cidofovir and ribavirin is not related to species alone. Antivir Ther 2009; 14(1): 55–61PubMedGoogle Scholar
  57. 57.
    Ljungman P, de la Camara R, Cordonnier C, et al. Management of CMV, HHV-6, HHV-7 and Kaposi-sarcoma herpesvirus (HHV-8) infections in patients with hematological malignancies and after SCT. Bone Marrow Transplant 2008; 42(4): 227–40CrossRefPubMedGoogle Scholar
  58. 58.
    Lacy SA, Hitchcock MJ, Lee WA, et al. Effect of oral probenecid coadministration on the chronic toxicity and pharmacokinetics of intravenous cidofovir in cynomolgus monkeys. Toxicol Sci 1998; 44(2): 97–106CrossRefPubMedGoogle Scholar
  59. 59.
    Safrin S, Cherrington J, Jaffe HS. Clinical uses of cidofovir. Rev Med Virol 1997; 7(3): 145–56CrossRefPubMedGoogle Scholar
  60. 60.
    Prichard MN, Kern ER, Hartline CB, et al. CMX001 potentiates the efficacy of acyclovir in herpes simplex virus infections. Antimicrob Agents Chemother 2011; 55(10): 4728–34CrossRefPubMedGoogle Scholar
  61. 61.
    Paolino K, Sande J, Perez E, et al. Eradication of disseminated adenovirus infection in a pediatric hematopoietic stem cell transplantation recipient using the novel antiviral agent CMX001. J Clin Virol 2011; 50(2): 167–70CrossRefPubMedGoogle Scholar
  62. 62.
    Florescu DF, Pergam SA, Neely MN, et al. Safety and efficacy of CMX001 as salvage therapy for severe adenovirus infections in immunocompromised patients. Biol Blood Marrow Transplant. Epub 2011 Sep 29Google Scholar
  63. 63.
    Matthes-Martin S, Feuchtinger T, Shaw P, et al. Management of adenovirus (ADV) infections. 4th European Conference on Infections in Leukaemia [online]. Available from URL: [Accessed 2012 Mar 23]
  64. 64.
    Hoffman JA, Shah AJ, Ross LA, et al. Adenoviral infections and a prospective trial of cidofovir in pediatric hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2001; 7(7): 388–94CrossRefPubMedGoogle Scholar
  65. 65.
    Bordigoni P, Carret AS, Venard V, et al. Treatment of adenovirus infections in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2001; 32(9): 1290–7CrossRefPubMedGoogle Scholar
  66. 66.
    Leruez-Ville M, Chardin-Ouachee M, Neven B, et al. Description of an adenovirus A31 outbreak in a paediatric haematology unit. Bone Marrow Transplant 2006; 38(1): 23–8CrossRefPubMedGoogle Scholar
  67. 67.
    Ljungman P, Ribaud P, Eyrich M, et al. Cidofovir for adenovirus infections after allogeneic hematopoietic stem cell transplantation: a survey by the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2003; 31(6): 481–6CrossRefPubMedGoogle Scholar
  68. 68.
    Nagafuji K, Aoki K, Henzan H, et al. Cidofovir for treating adenoviral hemorrhagic cystitis in hematopoietic stem cell transplant recipients. Bone Marrow Transplant 2004; 34(10): 909–14CrossRefPubMedGoogle Scholar
  69. 69.
    Stock R, Harste G, Madisch I, et al. A rapid quantitative PCR-based assay for testing antiviral agents against human adenoviruses demonstrates type specific differences in ribavirin activity. Antiviral Res 2006; 72(1): 34–41CrossRefPubMedGoogle Scholar
  70. 70.
    Heemskerk B, Lankester AC, van Vreeswijk T, et al. Immune reconstitution and clearance of human adenovirus viremia in pediatric stem-cell recipients. J Infect Dis 2005; 191(4): 520–30CrossRefPubMedGoogle Scholar
  71. 71.
    Feuchtinger T, Lucke J, Hamprecht K et al. Detection of adenovirus-specific T cells in children with adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 2005; 128(4): 503–9CrossRefPubMedGoogle Scholar
  72. 72.
    Myers GD, Bollard CM, Wu MF, et al. Reconstitution of adenovirus-specific cell-mediated immunity in pediatric patients after hematopoietic stem cell transplantation. Bone Marrow Transplant 2007; 39(11): 677–86CrossRefPubMedGoogle Scholar
  73. 73.
    Zandvliet ML, Falkenburg JH, van Liempt E, et al. Combined CD8+ and CD4+ adenovirus hexon-specific T cells associated with viral clearance after stem cell transplantation as treatment for adenovirus infection. Haematologica 2010; 95(11): 1943–51CrossRefPubMedGoogle Scholar
  74. 74.
    Zandvliet ML, vanLiempt E, Jedema I, et al. Simultaneous isolation of CD8(+) and CD4(+) T cells specific for multiple viruses for broad antiviral immune reconstitution after allogeneic stem cell transplantation. J Immunother 2011; 34(3): 307–19CrossRefPubMedGoogle Scholar
  75. 75.
    Leen AM, Christin A, Myers GD, et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood 2009; 114(19): 4283–92CrossRefPubMedGoogle Scholar
  76. 76.
    Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 2006; 12(10): 1160–6CrossRefPubMedGoogle Scholar
  77. 77.
    Boeckh M, Leisenring W, Riddell SR et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 2003; 101(2): 407–14CrossRefPubMedGoogle Scholar
  78. 78.
    Zaia JA. Prevention and management of CMV-related problems after hematopoietic stem cell transplantation. Bone Marrow Transplant 2002; 29(8): 633–8CrossRefPubMedGoogle Scholar
  79. 79.
    Razonable RR, Emery VC. Management of CMV infection and disease in transplant patients. 27–29 February 2004. Herpes 2004; 11(3): 77–86PubMedGoogle Scholar
  80. 80.
    Jarvis MA, Nelson JA. Chapter 42: molecular basis of persistence and latency. In: Arvin A, Campadelli-Fiume G, Mocarski E, et al, editors. Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge: Cambridge University Press, 2007 [online]. Available from URL: [Accessed 2012 Mar 9]Google Scholar
  81. 81.
    Ljungman P, Hakki M, Boeckh M. Cytomegalovirus in hematopoietic stem cell transplant recipients.Infect Dis Clin North Am 2010; 24(2): 319–37CrossRefPubMedGoogle Scholar
  82. 82.
    Matthes-Martin S, Lion T, Aberle SW, et al. Pre-emptive treatment of CMV DNAemia in paediatric stem cell transplantation: the impact of recipient and donor CMV serostatus on the incidence of CMV disease and CMV-related mortality. Bone Marrow Transplant 2003; 31(9): 803–8CrossRefPubMedGoogle Scholar
  83. 83.
    Ljungman P, Perez-Bercoff L, Jonsson J, et al. Risk factors for the development of cytomegalovirus disease after allogeneic stem cell transplantation. Haematologica 2006; 91(1): 78–83PubMedGoogle Scholar
  84. 84.
    Boeckh M, Nichols WG. The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy. Blood 2004; 103(6): 2003–8CrossRefPubMedGoogle Scholar
  85. 85.
    Ozdemir E, Saliba RM, Champlin RE, et al. Risk factors associated with late cytomegalovirus reactivation after allogeneic stem cell transplantation for hematological malignancies. Bone Marrow Transplant 2007; 40(2): 125–36CrossRefPubMedGoogle Scholar
  86. 86.
    Patel SR, Ridwan RU, Ortin M. Cytomegalovirus reactivation in pediatric hemopoietic progenitors transplant: a retrospective study on the risk factors and the efficacy of treatment. J Pediatr Hematol Oncol 2005; 27(8): 411–5CrossRefPubMedGoogle Scholar
  87. 87.
    Winston DJ, Yeager AM, Chandrasekar PH, et al. Randomized comparison of oral valacyclovir and intravenous ganciclovir for prevention of cytomegalovirus disease after allogeneic bone marrow transplantation. Clin Infect Dis 2003; 36(6): 749–58CrossRefPubMedGoogle Scholar
  88. 88.
    Griffiths P, Whitley R, Snydman DR, et al. Contemporary management of cytomegalovirus infection in transplant recipients: guidelines from an IHMF workshop, 2007. Herpes 2008; 15(1): 4–12PubMedGoogle Scholar
  89. 89.
    Salzberger B, Bowden RA, Hackman RC, et al. Neutropenia in allogeneic marrow transplant recipients receiving ganciclovir for prevention of cytomegalovirus disease: risk factors and outcome. Blood 1997; 90(6): 2502–8PubMedGoogle Scholar
  90. 90.
    Winston DJ, Young JA, Pullarkat V, et al. Maribavir prophylaxis for prevention of cytomegalovirus infection in allogeneic stem cell transplant recipients: a multicenter, randomized, double-blind, placebo-controlled, dose-ranging study. Blood 2008; 111(11): 5403–10CrossRefPubMedGoogle Scholar
  91. 91.
    Marty FM, Ljungman P, Papanicolaou GA, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis 2011; 11(4): 284–92CrossRefPubMedGoogle Scholar
  92. 92.
    Ruell J, Barnes C, Mutton K, et al. Active CMV disease does not always correlate with viral load detection. Bone Marrow Transplant 2007; 40(1): 55–61CrossRefPubMedGoogle Scholar
  93. 93.
    Emery VC, Sabin CA, Cope AV, et al. Application of viral-load kinetics to identify patients who develop cytomegalovirus disease after transplantation. Lancet 2000; 355(9220): 2032–6CrossRefPubMedGoogle Scholar
  94. 94.
    Einsele H, Reusser P, Bornhauser M, et al. Oral valganciclovir leads to higher exposure to ganciclovir than intravenous ganciclovir in patients following allogeneic stem cell transplantation. Blood 2006; 107(7): 3002–8CrossRefPubMedGoogle Scholar
  95. 95.
    Reusser P, Einsele H, Lee J, et al. Randomized multicenter trial of foscarnet versus ganciclovir for preemptive therapy of cytomegalovirus infection after allogeneic stem cell transplantation. Blood 2002; 99(4): 1159–64CrossRefPubMedGoogle Scholar
  96. 96.
    Ljungman P, Deliliers GL, Platzbecker U, et al. Cidofovir for cytomegalovirus infection and disease in allogeneic stem cell transplant recipients. The Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Blood 2001; 97(2): 388–92CrossRefPubMedGoogle Scholar
  97. 97.
    Cesaro S, Zhou X, Manzardo C, et al. Cidofovir for cytomegalovirus reactivation in pediatric patients after hematopoietic stem cell transplantation. J Clin Virol 2005; 34(2): 129–32CrossRefPubMedGoogle Scholar
  98. 98.
    Mattes FM, Hainsworth EG, Geretti AM, et al. A randomized, controlled trial comparing ganciclovir to ganciclovir plus foscarnet (each at half dose) for preemptive therapy of cytomegalovirus infection in transplant recipients. J Infect Dis 2004; 189(8): 1355–61CrossRefPubMedGoogle Scholar
  99. 99.
    Asakura M, Ikegame K, Yoshihara S, et al. Use of foscarnet for cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation from a related donor. Int J Hematol 2010; 92(2): 351–9CrossRefPubMedGoogle Scholar
  100. 100.
    Peggs KS. Adoptive T cell immunotherapy for cytomegalovirus. Expert Opin Biol Ther 2009; 9(6): 725–36CrossRefPubMedGoogle Scholar
  101. 101.
    Machado CM, Dulley FL, Boas LS, et al. CMV pneumonia in allogeneic BMT recipients undergoing early treatment of pre-emptive ganciclovir therapy. Bone Marrow Transplant 2000; 26(4): 413–7CrossRefPubMedGoogle Scholar
  102. 102.
    Erard V, Guthrie K, Smith J, et al. Cytomegalovirus pneumonia (CMV-IP) after hematopoietic cell transplantation (HCT): outcomes and factors associated with mortality [abstract]. 47th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); 2007 Sep 17–20; Chicago (IL)Google Scholar
  103. 103.
    James SH, Prichard MN. The genetic basis of human cytomegalovirus resistance and current trends in antiviral resistance analysis. Infect Disord Drug Targets 2011; 11(5): 504–13CrossRefPubMedGoogle Scholar
  104. 104.
    Grigoleit GU, Kapp M, Hebart H, et al. Dendritic cell vaccination in allogeneic stem cell recipients: induction of human cytomegalovirus (HCMV)-specific cytotoxic T lymphocyte responses even in patients receiving a transplant from an HCMV-seronegative donor. J Infect Dis 2007; 196(5): 699–704CrossRefPubMedGoogle Scholar
  105. 105.
    Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333(16): 1038–44CrossRefPubMedGoogle Scholar
  106. 106.
    Peggs KS, Verfuerth S, Pizzey A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003; 362(9393): 1375–7CrossRefPubMedGoogle Scholar
  107. 107.
    Feuchtinger T, Opherk K, Bethge WA, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 2010; 116(20): 4360–7CrossRefPubMedGoogle Scholar
  108. 108.
    Sun JC, Williams MA, Bevan MJ. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 2004; 5(9): 927–33CrossRefPubMedGoogle Scholar
  109. 109.
    Styczynski J, Einsele H, Gil L, et al. Outcome of treatment of Epstein-Barr virus-related post-transplant lymphoproliferative disorder in hematopoietic stem cell recipients: a comprehensive review of reported cases. Transpl Infect Dis 2009; 11(5): 383–92CrossRefPubMedGoogle Scholar
  110. 110.
    Bar-Natan M, Nagler A. Epstein-Barr virus-associated post-transplant lymphoproliferative disorder. Isr Med Assoc J 2006; 8(3): 205–7PubMedGoogle Scholar
  111. 111.
    Ocheni S, Kroeger N, Zabelina T, et al. EBV reactivation and post transplant lymphoproliferative disorders following allogeneic SCT. Bone Marrow Transplant 2008; 42(3): 181–6CrossRefPubMedGoogle Scholar
  112. 112.
    Babcock GJ, Decker LL, Freeman RB, et al. Epstein-Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J Exp Med 1999; 190(4): 567–76CrossRefPubMedGoogle Scholar
  113. 113.
    Sundin M, Le Blanc K, Ringden O, et al. The role of HLA mismatch, splenectomy and recipient Epstein-Barr virus seronegativity as risk factors in post-transplant lymphoproliferative disorder following allogeneic hematopoietic stem cell transplantation. Haematologica 2006; 91(8): 1059–67PubMedGoogle Scholar
  114. 114.
    Curtis RE, Travis LB, Rowlings PA, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 1999; 94(7): 2208–16PubMedGoogle Scholar
  115. 115.
    Styczynski J, Reusser P, Einsele H, et al. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant 2009; 43(10): 757–70CrossRefPubMedGoogle Scholar
  116. 116.
    Faraci M, Caviglia I, Morreale G, et al. Viral-load and B-lymphocyte monitoring of EBV reactivation after allogeneic hemopoietic SCT in children. Bone Marrow Transplant 2010; 45(6): 1052–5CrossRefPubMedGoogle Scholar
  117. 117.
    Gottschalk S, Rooney CM, Heslop HE. Post-transplant lymphoproliferative disorders. Annu Rev Med 2005; 56: 29–44CrossRefPubMedGoogle Scholar
  118. 118.
    Tsao L, Hsi ED. The clinicopathologic spectrum of posttransplantation lymphoproliferative disorders. Arch Pathol Lab Med 2007; 131(8): 1209–18PubMedGoogle Scholar
  119. 119.
    Heslop HE. How I treat EBV lymphoproliferation. Blood 2009; 114(19): 4002–8CrossRefPubMedGoogle Scholar
  120. 120.
    Merlino C, Cavallo R, Bergallo M, et al. Epstein Barr viral load monitoring by quantitative PCR in renal transplant patients. New Microbiol 2003; 26(2): 141–9PubMedGoogle Scholar
  121. 121.
    Gartner BC, Schafer H, Marggraff K, et al. Evaluation of use of Epstein-Barr viral load in patients after allogeneic stem cell transplantation to diagnose and monitor posttransplant lymphoproliferative disease. J Clin Microbiol 2002; 40(2): 351–8CrossRefPubMedGoogle Scholar
  122. 122.
    Wagner HJ, Cheng YC, Huls MH, et al. Prompt versus preemptive intervention for EBV lymphoproliferative disease. Blood 2004; 103(10): 3979–81CrossRefPubMedGoogle Scholar
  123. 123.
    Weinstock DM, Ambrossi GG, Brennan C, et al. Preemptive diagnosis and treatment of Epstein-Barr virus-associated post transplant lymphoproliferative disorder after hematopoietic stem cell transplant: an approach in development. Bone Marrow Transplant 2006; 37(6): 539–46CrossRefPubMedGoogle Scholar
  124. 124.
    Coppoletta S, Tedone E, Galano B, et al. Rituximab treatment for Epstein-Barr virus DNAemia after alternative-donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2011; 17(6): 901–7CrossRefPubMedGoogle Scholar
  125. 125.
    Carpenter B, Haque T, Dimopoulou M, et al. Incidence and dynamics of Epstein-Barr virus reactivation after alemtuzumab-based conditioning for allogeneic hematopoietic stem-cell transplantation. Transplantation 2010; 90(5): 564–70CrossRefPubMedGoogle Scholar
  126. 126.
    Worth A, Conyers R, Cohen J, et al. Pre-emptive rituximab based on viraemia and T cell reconstitution: a highly effective strategy for the prevention of Epstein-Barr virus-associated lymphoproliferative disease following stem cell transplantation. Br J Haematol 2011; 155(3): 377–85CrossRefPubMedGoogle Scholar
  127. 127.
    Heslop HE, Brenner MK, Rooney CM. Donor T cells to treat EBV-associated lymphoma. N Engl J Med 1994; 331(10): 679–80CrossRefPubMedGoogle Scholar
  128. 128.
    O’Reilly RJ, Small TN, Papadopoulos E, et al. Biology and adoptive cell therapy of Epstein-Barr virus-associated lymphoproliferative disorders in recipients of marrow allografts. Immunol Rev 1997; 157: 195–216CrossRefPubMedGoogle Scholar
  129. 129.
    Hislop AD, Taylor GS, Sauce D, et al. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 2007; 25: 587–617CrossRefPubMedGoogle Scholar
  130. 130.
    Heslop HE, Ng CY, Li C, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996; 2(5): 551–5CrossRefPubMedGoogle Scholar
  131. 131.
    Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92(5): 1549–55PubMedGoogle Scholar
  132. 132.
    Comoli P, Basso S, Zecca M, et al. Preemptive therapy of EBV-related lymphoproliferative disease after pediatric haploidentical stem cell transplantation. Am J Transplant 2007; 7(6): 1648–55CrossRefPubMedGoogle Scholar
  133. 133.
    Haque T, Wilkie GM, Jones MM, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 2007; 110(4): 1123–31CrossRefPubMedGoogle Scholar
  134. 134.
    Moosmann A, Bigalke I, Tischer J, et al. Effective and long-term control of EBV PTLD after transfer of peptide-selected T cells. Blood 2010; 115(14): 2960–70CrossRefPubMedGoogle Scholar
  135. 135.
    Trappe R, Riess H, Babel N, et al. Salvage chemotherapy for refractory and relapsed posttransplant lymphoproliferative disorders (PTLD) after treatment with single-agent rituximab. Transplantation 2007; 83(7): 912–8CrossRefPubMedGoogle Scholar
  136. 136.
    DeBolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 2005; 18(1): 217–45CrossRefPubMedGoogle Scholar
  137. 137.
    Fischer SA. Emerging viruses in transplantation: there is more to infection after transplant than CMV and EBV. Transplantation 2008; 86(10): 1327–39CrossRefPubMedGoogle Scholar
  138. 138.
    Zerr DM, Corey L, Kim HW, et al. Clinical outcomes of human herpesvirus 6 reactivation after hematopoietic stem cell transplantation. Clin Infect Dis 2005; 40(7): 932–40CrossRefPubMedGoogle Scholar
  139. 139.
    Ogata M, Kikuchi H, Satou T, et al. Human herpesvirus 6 DNA in plasma after allogeneic stem cell transplantation: incidence and clinical significance. J Infect Dis 2006; 193(1): 68–79CrossRefPubMedGoogle Scholar
  140. 140.
    Yamane A, Mori T, Suzuki S, et al. Risk factors for developing human herpesvirus 6 (HHV-6) reactivation after allogeneic hematopoietic stem cell transplantation and its association with central nervous system disorders. Biol Blood Marrow Transplant 2007; 13(1): 100–6CrossRefPubMedGoogle Scholar
  141. 141.
    Hentrich M, Oruzio D, Jager G, et al. Impact of human herpesvirus-6 after haematopoietic stem cell transplantation. Br J Haematol 2005; 128(1): 66–72CrossRefPubMedGoogle Scholar
  142. 142.
    Chamberlain MC, Chowdhary S. Post-transplant acute limbic encephalitis: clinical features and relationship to HHV6. Neurology 2008; 70(6): 491–2; author reply 492-3CrossRefPubMedGoogle Scholar
  143. 143.
    Zerr DM, Fann JR, Breiger D, et al. HHV-6 reactivation and its effect on delirium and cognitive functioning in hematopoietic cell transplantation recipients. Blood 2011; 117(19): 5243–9CrossRefPubMedGoogle Scholar
  144. 144.
    Schonberger S, Meisel R, Adams O, et al. Prospective, comprehensive, and effective viral monitoring in children undergoing allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2010; 16(10): 1428–35CrossRefPubMedGoogle Scholar
  145. 145.
    Betts BC, Young JA, Ustun C, et al. Human herpesvirus 6 infection after hematopoietic cell transplantation: is routine surveillance necessary? Biol Blood Marrow Transplant 2011; 17(10): 1562–8CrossRefPubMedGoogle Scholar
  146. 146.
    Morissette G, Flamand L.Herpesviruses and chromosomal integration. J Virol 2010; 84(23): 12100–9CrossRefPubMedGoogle Scholar
  147. 147.
    Kaufer BB, Jarosinski KW, Osterrieder N. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J Exp Med 2011; 208(3): 605–15CrossRefPubMedGoogle Scholar
  148. 148.
    Pellett PE, Ablashi DV, Ambros PF, et al. Chromosomally integrated human herpesvirus 6: questions and answers. Rev Med Virol. Epub 2011 Nov4Google Scholar
  149. 149.
    Hall CB, Caserta MT, Schnabel K, et al. Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatrics 2008; 122(3): 513–20CrossRefPubMedGoogle Scholar
  150. 150.
    Daibata M, Taguchi T, Nemoto Y, et al. Inheritance of chromosomally integrated human herpesvirus 6 DNA. Blood 1999; 94(5): 1545–9PubMedGoogle Scholar
  151. 151.
    Ward KN, Leong HN, Thiruchelvam AD, et al. Human herpesvirus 6 DNA levels in cerebrospinal fluid due to primary infection differ from those due to chromosomal viral integration and have implications for diagnosis of encephalitis. J Clin Microbiol 2007; 45(4): 1298–304CrossRefPubMedGoogle Scholar
  152. 152.
    Caserta MT, Hall CB, Schnabel K, et al. Diagnostic assays for active infection with human herpesvirus 6 (HHV-6). J Clin Virol 2010; 48(1): 55–7CrossRefPubMedGoogle Scholar
  153. 153.
    Clark DA, Ward KN. Importance of chromosomally integrated HHV-6A and -6B in the diagnosis of active HHV-6 infection. Herpes 2008}; 15(2)}: 28–22PubMedGoogle Scholar
  154. 154.
    Ogata M. Human herpesvirus 6 in hematological malignancies. J Clin Exp Hematop 2009; 49(2): 57–67CrossRefPubMedGoogle Scholar
  155. 155.
    Tokimasa S, Hara J, Osugi Y, et al. Ganciclovir is effective for prophylaxis and treatment of human herpesvirus-6 in allogeneic stem cell transplantation. Bone Marrow Transplant 2002; 29(7): 595–8CrossRefPubMedGoogle Scholar
  156. 156.
    Rapaport D, Engelhard D, Tagger G, et al. Antiviral prophylaxis may prevent human herpesvirus-6 reactivation in bone marrow transplant recipients. Transpl Infect Dis 2002; 4(1): 10–6CrossRefPubMedGoogle Scholar
  157. 157.
    Pohlmann C, Schetelig J, Reuner U, et al. Cidofovir and foscarnet for treatment of human herpesvirus 6 encephalitis in a neutropenic stem cell transplant recipient. Clin Infect Dis 2007; 44(12): e1 18–20CrossRefGoogle Scholar
  158. 158.
    Ogata M, Satou T, Kawano R, et al. Plasma HHV-6 viral load-guided preemptive therapy against HHV-6 encephalopathy after allogeneic stem cell transplantation: a prospective evaluation. Bone Marrow Transplant 2008; 41(3): 279–85CrossRefPubMedGoogle Scholar
  159. 159.
    Ishiyama K, Katagiri T, Hoshino T, et al. Preemptive therapy of human herpesvirus-6 encephalitis with foscarnet sodium for high-risk patients after hematopoietic SCT. Bone Marrow Transplant 2011; 46(6): 863–9CrossRefPubMedGoogle Scholar
  160. 160.
    Zerr DM. Human herpesvirus 6 and central nervous system disease in hematopoietic cell transplantation. J Clin Virol 2006; 37Suppl. 1: S52–6CrossRefPubMedGoogle Scholar
  161. 161.
    Ljungman P, Singh N. Human herpesvirus-6 infection in solid organ and stem cell transplant recipients. J Clin Virol 2006; 37Suppl. 1: S87–91CrossRefPubMedGoogle Scholar
  162. 162.
    Dewhurst S. Human herpesvirus type 6 and human herpesvirus type 7 infections of the central nervous system. Herpes 2004; 11Suppl. 2: 105A–111APubMedGoogle Scholar
  163. 163.
    Meyers JD, Flournoy N, Thomas ED. Infection with herpes simplex virus and cell-mediated immunity after marrow transplant. J Infect Dis 1980; 142(3): 338–46CrossRefPubMedGoogle Scholar
  164. 164.
    Chakrabarti S, Pillay D, Ratcliffe D, et al. Resistance to antiviral drugs in herpes simplex virus infections among allogeneic stem cell transplant recipients: risk factors and prognostic significance. J Infect Dis 2000; 181(6): 2055–8CrossRefPubMedGoogle Scholar
  165. 165.
    Chen Y, Scieux C, Garrait V, et al. Resistant herpes simplex virus type 1 infection: an emerging concern after allogeneic stem cell transplantation. Clin Infect Dis 2000; 31(4): 927–35CrossRefPubMedGoogle Scholar
  166. 166.
    Blot N, Schneider P, Young P, et al. Treatment of an acyclovir and foscarnet-resistant herpes simplex virus infection with cidofovir in a child after an unrelated bone marrow transplant. Bone Marrow Transplant 2000; 26(8): 903–5CrossRefPubMedGoogle Scholar
  167. 167.
    Bryant P, Sasadeusz J, Carapetis J, et al. Successful treatment of foscarnet-resistant herpes simplex stomatitis with intravenous cidofovir in a child. Pediatr Infect Dis J 2001; 20(11): 1083–6CrossRefPubMedGoogle Scholar
  168. 168.
    Atkinson K, Meyers JD, Storb R, et al. Varicella-zoster virus infection after marrow transplantation for aplastic anemia or leukemia. Transplantation 1980; 29(1): 47–50CrossRefPubMedGoogle Scholar
  169. 169.
    Drakos P, Weinberger M, Delukina M, et al. Inappropriate antidiuretic hormone secretion (SIADH) preceding skin manifestations of disseminated varicella zoster virus infection post-BMT. Bone Marrow Transplant 1993; 11(5): 407–8PubMedGoogle Scholar
  170. 170.
    Rogers SY, Irving W, Harris A, et al. Visceral varicella zoster infection after bone marrow transplantation without skin involvement and the use of PCR for diagnosis. Bone Marrow Transplant 1995; 15(5): 805–7PubMedGoogle Scholar
  171. 171.
    Szabo F, Horvath N, Seimon S, et al. Inappropriate antidiuretic hormone secretion, abdominal pain and disseminated varicella-zoster virus infection: an unusual triad in a patient 6 months post mini-allogeneic peripheral stem cell transplant for chronic myeloid leukemia. Bone Marrow Transplant 2000; 26(2): 231–3CrossRefPubMedGoogle Scholar
  172. 172.
    McIlwaine LM, Fitzsimons EJ, Soutar RL. Inappropriate antidiuretic hormone secretion, abdominal pain and disseminated varicella-zoster virus infection: an unusual and fatal triad in a patient 13 months post rituximab and autologous stem cell transplantation. Clin Lab Haematol 2001; 23(4): 253–4CrossRefPubMedGoogle Scholar
  173. 173.
    deJong MD, Weel JF, van Oers MH, et al. Molecular diagnosis of visceral herpes zoster. Lancet 2001; 357(9274): 2101–2CrossRefPubMedGoogle Scholar
  174. 174.
    Au WY, Ma SY, Cheng VC, et al. Disseminated zoster, hyponatraemia, severe abdominal pain and leukaemia relapse: recognition of a new clinical quartet after bone marrow transplantation. Br J Dermatol 2003; 149(4): 862–5CrossRefPubMedGoogle Scholar
  175. 175.
    Vinzio S, Lioure B, Enescu I, et al. Severe abdominal pain and inappropriate antidiuretic hormone secretion preceding varicella-zoster virus reactivation 10 months after autologous stem cell transplantation for acute myeloid leukaemia. Bone Marrow Transplant 2005; 35(5): 525–7CrossRefPubMedGoogle Scholar
  176. 176.
    Rau R, Fitzhugh CD, Baird K, et al. Triad of severe abdominal pain, inappropriate antidiuretic hormone secretion, and disseminated varicella-zoster virus infection preceding cutaneous manifestations after hematopoietic stem cell transplantation: utility of PCR for early recognition and therapy. Pediatr Infect Dis J 2008; 27(3): 265–8CrossRefPubMedGoogle Scholar
  177. 177.
    Kalpoe JS, Kroes AC, Verkerk S, et al. Clinical relevance of quantitative varicella-zoster virus (VZV) DNA detection in plasma after stem cell transplantation.Bone Marrow Transplant 2006; 38(1): 41–6CrossRefPubMedGoogle Scholar
  178. 178.
    Suga S, Yoshikawa T, Ozari T, et al. Effect of oral acyclovir against primary and secondary viraemia in incubation period of varicella. Arch Dis Child 1993; 69(6): 639–42; discussion 642-3CrossRefPubMedGoogle Scholar
  179. 179.
    Lin TY, Huang YC, Ning HC, et al. Oral acyclovir prophylaxis of varicella after intimate contact. Pediatr Infect Dis J 1997; 16(12): 1162–5CrossRefPubMedGoogle Scholar
  180. 180.
    Asano Y, Yoshikawa T, Suga S, et al. Postexposure prophylaxis of varicella in family contact by oral acyclovir. Pediatrics 1993; 92(2): 219–22PubMedGoogle Scholar
  181. 181.
    Weinstock DM, Boeckh M, Boulad F, et al. Postexposure prophylaxis against varicella-zoster virus infection among recipients of hematopoietic stem cell transplant: unresolved issues. Infect Control Hosp Epidemiol 2004; 25(7): 603–8CrossRefPubMedGoogle Scholar
  182. 182.
    Hatchette T, Tipples GA, Peters G, et al. Foscarnet salvage therapy for acyclovir-resistant varicella zoster: report of a novel thymidine kinase mutation and review of the literature. Pediatr Infect Dis J 2008; 27(1): 75–7CrossRefPubMedGoogle Scholar
  183. 183.
    Hirsch HH, Steiger J.Polyomavirus BK. Lancet Infect Dis 2003; 3(10): 611–23CrossRefPubMedGoogle Scholar
  184. 184.
    Reploeg MD, Storch GA, Clifford DB. BK virus: a clinical review. Clin Infect Dis2001; 33(2): 191–202CrossRefPubMedGoogle Scholar
  185. 185.
    Dalianis T, Ljungman P. Full myeloablative conditioning and an unrelated HLA mismatched donor increase the risk for BK virus-positive hemorrhagic cystitis in allogeneic hematopoetic stem cell transplanted patients. Anti-cancer Res 2011; 31(3): 939–44Google Scholar
  186. 186.
    Dropulic LK, Jones RJ. Polyomavirus BK infection in blood and marrow transplant recipients. Bone Marrow Transplant 2008; 41(1): 11–8CrossRefPubMedGoogle Scholar
  187. 187.
    Lopes da Silva R, Ferreira I, Teixeira G, et al. BK virus encephalitis with thrombotic microangiopathy in an allogeneic hematopoietic stem cell transplant recipient. Transpl Infect Dis 2011; 13(2): 161–7CrossRefGoogle Scholar
  188. 188.
    Sanchez-Pinto LN, Laskin BL, Jodele S, et al. BK virus nephropathy in a pediatric autologous stem-cell transplant recipient. Pediatr Blood Cancer 2011; 56(3): 495–7CrossRefPubMedGoogle Scholar
  189. 189.
    Erard V, Kim HW, Corey L, et al. BK DNA viral load in plasma: evidence for an association with hemorrhagic cystitis in allogeneic hematopoietic cell transplant recipients. Blood 2005; 106(3): 1130–2CrossRefPubMedGoogle Scholar
  190. 190.
    O’Donnell PH, Swanson K, Josephson A, et al. BK virus infection is associated with hematuria and renal impairment in recipients of allogeneic hematopoetic stem cell transplants. Biol Blood Marrow Transplant 2009; 15(9): 1038–48.e1CrossRefPubMedGoogle Scholar
  191. 191.
    Rinaldo CH, Hirsch HH. Antivirals for the treatment of polyomavirus BK replication. Expert Rev Anti Infect Ther 2007; 5(1): 105–15CrossRefPubMedGoogle Scholar
  192. 192.
    Leung AY, Chang MT, Yuen KY, et al. Ciprofloxacin decreased polyoma BK virus load in patients who underwent allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2005; 40(4): 528–37CrossRefPubMedGoogle Scholar
  193. 193.
    Randhawa PS. Anti-BK virus activity of ciprofloxacin and related antibiotics [letter]. Clin Infect Dis 2005; 41(9): 1366–7; author reply 1367CrossRefPubMedGoogle Scholar
  194. 194.
    Tomblyn M, Chiller T, Einsele H, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant 2009; 15(10): 1143–238CrossRefPubMedGoogle Scholar
  195. 195.
    Ganguly N, Clough LA, Dubois LK, et al. Low-dose cidofovir in the treatment of symptomatic BK virus infection in patients undergoing allogeneic hematopoietic stem cell transplantation: a retrospective analysis of an algorithmic approach. Transpl Infect Dis 2010; 12(5): 406–11CrossRefPubMedGoogle Scholar
  196. 196.
    Cesaro S, Hirsch HH, Faraci M, et al. Cidofovir for BK virus-associated hemorrhagic cystitis: a retrospective study. Clin Infect Dis 2009; 49(2): 233–40CrossRefPubMedGoogle Scholar
  197. 197.
    Pang XL, Fox JD, Fenton JM, et al. Interlaboratory comparison of cytomegalovirus viral load assays. Am J Transplant 2009; 9(2): 258–68CrossRefPubMedGoogle Scholar
  198. 198.
    Preiksaitis JK, Pang XL, Fox JD, et al. Interlaboratory comparison of Epstein-Barr virus viral load assays. Am J Transplant 2009; 9(2): 269–79CrossRefPubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2012

Authors and Affiliations

  • Sabine Breuer
    • 1
  • Margit Rauch
    • 2
  • Susanne Matthes-Martin
    • 1
  • Thomas Lion
    • 2
  1. 1.Department of Pediatric Stem Cell TransplantationSt. Anna Children’s Hospital, Medical University of ViennaViennaAustria
  2. 2.Children’s Cancer Research InstituteMedical University of ViennaViennaAustria

Personalised recommendations