Molecular Diagnosis & Therapy

, Volume 13, Issue 3, pp 181–193 | Cite as

Global Transcriptional Analysis for Biomarker Discovery and Validation in Cellular Therapies

  • David F. Stroncek
  • Ping Jin
  • Ena Wang
  • Jiagiang Ren
  • Marianna Sabatino
  • Francesco M. Marincola
Review Article


Potency testing is an important part of the evaluation of cellular therapy products. Potency assays are quantitative measures of a product-specific biologic activity that is linked to a relevant biologic property and, ideally, a product’s in vivo mechanism of action. Both in vivo and in vitro assays can be used for potency testing. Since there is often a limited period of time between the completion of production and the release from the laboratory for administration to the patient, in vitro assays such as flow cytometry, ELISA, and cytotoxicity are typically used. Better potency assays are needed to assess the complex and multiple functions of cellular therapy products, some of which are not well understood. Gene expression profiling using microarray technology has been widely and effectively used to assess changes of cells in response to stimuli and to classify cancers. Preliminary studies have shown that the expression of non-coding microRNA (miRNA), which plays an important role in cellular development, differentiation, metabolism, and signal transduction, can distinguish between different types of stem cells and leukocytes. Both gene and miRNA expression profiling have the potential to be important tools for testing the potency of cellular therapies. Potency testing, the complexities associated with potency testing of cellular therapies, and the potential role of gene and miRNA expression microarrays in potency testing of cellular therapies are discussed.


miRNA Expression Gene Expression Microarrays Cellular Therapy Potency Testing Plerixafor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Department of Transfusion Medicine, Clinical Center, National Institutes of Health for their support of this work. The authors have no conflicts of interest directly related to the content of this review.


  1. 1.
    Powell Jr DJ, Dudley ME, Hogan KA, et al. Adoptive transfer of vaccine-induced peripheral blood mononuclear cells to patients with metastatic melanoma following lymphodepletion. J Immunol 2006 Nov 1; 177(9): 6527–39PubMedGoogle Scholar
  2. 2.
    Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 2006 Oct; 12(10): 1160–6PubMedCrossRefGoogle Scholar
  3. 3.
    Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004 Mar 30; 109(12): 1543–9PubMedCrossRefGoogle Scholar
  4. 4.
    Nanjundappa A, Raza JA, Dieter RS, et al. Cell transplantation for treatment of left-ventricular dysfunction due to ischemic heart failure: from bench to bedside. Expert Rev Cardiovasc Ther 2007 Jan; 5(1): 125–31PubMedCrossRefGoogle Scholar
  5. 5.
    García-Castro J, Trigueros C, Madrenas J, et al. Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J Cell Mol Med 2008 Dec; 12(6B): 2552–65PubMedCrossRefGoogle Scholar
  6. 6.
    Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007 Nov; 262(5): 509–25CrossRefGoogle Scholar
  7. 7.
    Ariga T. Gene therapy for primary immunodeficiency diseases: recent progress and misgivings. Curr Pharm Des 2006; 12(5): 549–56PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986 Sep 19; 233(4770): 1318–21PubMedCrossRefGoogle Scholar
  9. 9.
    Rosenberg SA, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987 Apr 9; 316(15): 889–97PubMedCrossRefGoogle Scholar
  10. 10.
    Wrzesinski C, Paulos CM, Gattinoni L, et al. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest 2007 Feb; 117(2): 492–501PubMedCrossRefGoogle Scholar
  11. 11.
    Yang S, Rosenberg SA, Morgan RA. Clinical-scale lentiviral vector transduction of PBL for TCR gene therapy and potential for expression in less-differentiated cells. J Immunother 2008 Nov; 31(9): 830–9PubMedCrossRefGoogle Scholar
  12. 12.
    European Medicines Agency Committee for Medicinal Products for Human Use (CHMP). Guideline on potency testing of cell based immunotherapy medicinal products for the treatment of cancer [online]. Available from URL: [Accessed 2009 May 19]
  13. 13.
    US FDA Cellular, Tissue, and Gene Therapies Advisory Committee. Potency measurements for cell and gene therapy products. Meeting #41; 2006 Feb 9; Gaithersburg (MD)Google Scholar
  14. 14.
    International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. Specifications: test procedures and acceptance criteria for biotechnological/biological products. ICH tripartite harmonized guideline no. Q6B. Geneva: ICH Secretariat; 1999 Mar 10 [online]. Available from URL: [Accessed 2009 May 19]
  15. 15.
    Howell WM, Rose-Zerilli MJ. Interleukin-10 polymorphisms, cancer susceptibility and prognosis. Fam Cancer 2006; 5(2): 143–9PubMedCrossRefGoogle Scholar
  16. 16.
    Howell WM, Turner SJ, Bateman AC, et al. IL-10 promoter polymorphisms influence tumour development in cutaneous malignant melanoma. Genes Immun 2001 Feb; 2(1): 25–31PubMedCrossRefGoogle Scholar
  17. 17.
    McCarron SL, Edwards S, Evans PR, et al. Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res 2002 Jun 15; 62(12): 3369–72PubMedGoogle Scholar
  18. 18.
    Hollegaard MV, Bidwell JL. Cytokine gene polymorphism in human disease: on-line databases, supplement 3. Genes Immun 2006 Jun; 7(4): 269–76PubMedCrossRefGoogle Scholar
  19. 19.
    Provenzano M, Mocellin S, Bettinotti M, et al. Identification of immune dominant cytomegalovirus epitopes using quantitative real-time polymerase chain reactions to measure interferon-gamma production by peptide-stimulated peripheral blood mononuclear cells. J Immunother 2002 Jul; 25(4): 342–51PubMedCrossRefGoogle Scholar
  20. 20.
    Provenzano M, Mocellin S, Bonginelli P, et al. Ex vivo screening for immunodominant viral epitopes by quantitative real time polymerase chain reaction (qRT-PCR). J Transl Med 2003 Dec 15; 1(1): 12PubMedCrossRefGoogle Scholar
  21. 21.
    Kammula US, Marincola FM, Rosenberg SA. Real-time quantitative polymerase chain reaction assessment of immune reactivity in melanoma patients after tumor peptide vaccination. J Natl Cancer Inst 2000 Aug 16; 92(16): 1336–44PubMedCrossRefGoogle Scholar
  22. 22.
    Panelli MC, Wang E, Monsurro V, et al. The role of quantitative PCR for the immune monitoring of cancer patients. Expert Opin Biol Ther 2002 Jun; 2(5): 557–64PubMedCrossRefGoogle Scholar
  23. 23.
    Wang E, Miller LD, Ohnmacht GA, et al. High-fidelity mRNA amplification for gene profiling. Nat Biotechnol 2000 Apr; 18(4): 457–9PubMedCrossRefGoogle Scholar
  24. 24.
    Dave SS, Fu K, Wright GW, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 2006 Jun 8; 354(23): 2431–42PubMedCrossRefGoogle Scholar
  25. 25.
    Halvorsen OJ, Oyan AM, Bo TH, et al. Gene expression profiles in prostate cancer: association with patient subgroups and tumour differentiation. Int J Oncol 2005 Feb; 26(2): 329–36PubMedGoogle Scholar
  26. 26.
    Wang E, Ngalame Y, Panelli MC, et al. Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clin Cancer Res 2005 Jan 1; 11(1): 113–22PubMedCrossRefGoogle Scholar
  27. 27.
    Taniwaki M, Daigo Y, Ishikawa N, et al. Gene expression profiles of small-cell lung cancers: molecular signatures of lung cancer. Int J Oncol 2006 Sep; 29(3): 567–75PubMedGoogle Scholar
  28. 28.
    Basil CF, Zhao Y, Zavaglia K, et al. Common cancer biomarkers. Cancer Res 2006 Mar 15; 66(6): 2953–61PubMedCrossRefGoogle Scholar
  29. 29.
    Panelli MC, White R, Foster M, et al. Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. J Transl Med 2004 Jun 2; 2(1): 17PubMedCrossRefGoogle Scholar
  30. 30.
    Panelli MC, Stashower ME, Slade HB, et al. Sequential gene profiling of basal cell carcinomas treated with imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol 2007 Jan 12; 8(1): R8PubMedCrossRefGoogle Scholar
  31. 31.
    Mocellin S, Panelli M, Wang E, et al. IL-10 stimulatory effects on human NK cells explored by gene profile analysis. Genes Immun 2004 Dec; 5(8): 621–30PubMedCrossRefGoogle Scholar
  32. 32.
    Nagorsen D, Deola S, Smith K, et al. Polarized monocyte response to cytokine stimulation. Genome Biol 2005; 6(2): R15PubMedCrossRefGoogle Scholar
  33. 33.
    Stroncek DF, Basil C, Nagorsen D, et al. Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms. J Transl Med 2005 Jun 13; 3: 24PubMedCrossRefGoogle Scholar
  34. 34.
    Jin P, Wang E, Provenzano M, et al. Molecular signatures induced by interleukin-2 on peripheral blood mononuclear cells and T cell subsets. J Transl Med 2006; 4: 26PubMedCrossRefGoogle Scholar
  35. 35.
    Deonarine K, Panelli MC, Stashower ME, et al. Gene expression profiling of cutaneous wound healing. J Transl Med 2007; 5: 11PubMedCrossRefGoogle Scholar
  36. 36.
    Wellcome Trust Sanger Institute miRBase [online]. Available from URL: [Accessed 2009 Jun 12]
  37. 37.
    Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002 Apr 30; 12(9): 735–9PubMedCrossRefGoogle Scholar
  38. 38.
    Georgantas III RW, Hildreth R, Morisot S, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 2007 Feb 9; 104(8): 2750–5PubMedCrossRefGoogle Scholar
  39. 39.
    Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 2005 Dec 13; 102(50): 18081–6PubMedCrossRefGoogle Scholar
  40. 40.
    Jin P, Wang E, Ren J, et al. Differentiation of two types of mobilized peripheral blood stem cells by microRNA and cDNA expression analysis [abstract]. J Transl Med 2008 Jul 22; 6(1): 39PubMedCrossRefGoogle Scholar
  41. 41.
    Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004 Jan 2; 303(5654): 83–6PubMedCrossRefGoogle Scholar
  42. 42.
    Han J, Farnsworth RL, Tiwari JL, et al. Quality prediction of cell substrate using gene expression profiling. Genomics 2006 Apr; 87(4): 552–9PubMedCrossRefGoogle Scholar
  43. 43.
    Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996 Aug 15; 382(6592): 635–8PubMedCrossRefGoogle Scholar
  44. 44.
    Deichmann M, Kronenwett R, Haas R. Expression of the human immunodeficiency virus type-1 coreceptors CXCR-4 (fusin, LESTR) and CKR-5 in CD34+ hematopoietic progenitor cells. Blood 1997 May 15; 89(10): 3522–8PubMedGoogle Scholar
  45. 45.
    Mohle R, Bautz F, Rafii S, et al. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998 Jun 15; 91(12): 4523–30PubMedGoogle Scholar
  46. 46.
    Aiuti A, Webb IJ, Bleul C, et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 1997 Jan 6; 185(1): 111–20PubMedCrossRefGoogle Scholar
  47. 47.
    Kim CH, Broxmeyer HE. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 1998 Jan 1; 91(1): 100–10PubMedGoogle Scholar
  48. 48.
    Liles WC, Broxmeyer HE, Rodger E, et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003 Oct 15; 102(8): 2728–30PubMedCrossRefGoogle Scholar
  49. 49.
    Devine SM, Flomenberg N, Vesole DH, et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 2004 Mar 15; 22(6): 1095–102PubMedCrossRefGoogle Scholar
  50. 50.
    Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005 Apr 18; 201(8): 1307–18PubMedCrossRefGoogle Scholar
  51. 51.
    Flomenberg N, Devine SM, Dipersio JF, et al. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 2005 Sep 1; 106(5): 1867–74PubMedCrossRefGoogle Scholar
  52. 52.
    Nervi B, Link DC, Dipersio JF. Cytokines and hematopoietic stem cell mobilization. J Cell Biochem 2006 Oct 15; 99(3): 690–705PubMedCrossRefGoogle Scholar
  53. 53.
    Larochelle A, Krouse A, Metzger M, et al. AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 2006 May 1; 107(9): 3772–8PubMedCrossRefGoogle Scholar
  54. 54.
    Hess DA, Bonde J, Craft TP, et al. Human progenitor cells rapidly mobilized by AMD3100 repopulate NOD/SCID mice with increased frequency in comparison to cells from the same donor mobilized by granulocyte colony stimulating factor. Biol Blood Marrow Transplant 2007 Apr; 13(4): 398–411PubMedCrossRefGoogle Scholar
  55. 55.
    Fruehauf S, Seeger T, Maier P, et al. The CXCR4 antagonist AMD3100 releases a subset of G-CSF-primed peripheral blood progenitor cells with specific gene expression characteristics. Exp Hematol 2006 Aug; 34(8): 1052–9PubMedCrossRefGoogle Scholar
  56. 56.
    Donahue RE, Jin P, Bonifacino AC, et al. AMD3100 and granulocyte colony-stimulating factor (G-CSF) mobilize different CD34+ cell populations base on global gene and micro RNA expression [abstract]. Blood 2008 Nov 16; 112(11): 496Google Scholar
  57. 57.
    Schmitt A, Hus I, Schmitt M. Dendritic cell vaccines for leukemia patients. Expert Rev Anticancer Ther 2007 Mar; 7(3): 275–83PubMedCrossRefGoogle Scholar
  58. 58.
    Hinz T, Buchholz CJ, van der ST, et al. Manufacturing and quality control of cell-based tumor vaccines: a scientific and a regulatory perspective. J Immunother 2006 Sep; 29(5): 472–6PubMedCrossRefGoogle Scholar
  59. 59.
    Martinez FO, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006 Nov 15; 177(10): 7303–11PubMedGoogle Scholar
  60. 60.
    Shin JW, Jin P, Fan Y, et al. Evaluation of gene expression profiles of immature dendritic cells prepared from peripheral blood mononuclear cells. Transfusion 2008 Apr; 48(4): 647–57PubMedCrossRefGoogle Scholar
  61. 61.
    Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008 May 10; 371(9624): 1579–86CrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  • David F. Stroncek
    • 1
  • Ping Jin
    • 1
  • Ena Wang
    • 1
  • Jiagiang Ren
    • 1
  • Marianna Sabatino
    • 1
  • Francesco M. Marincola
    • 1
  1. 1.Department of Transfusion Medicine, Clinical CenterNational Institutes of HealthBethesdaUSA

Personalised recommendations