Molecular Diagnosis & Therapy

, Volume 12, Issue 4, pp 209–218 | Cite as

Recognition of Genetic Factors Influencing the Progression of Hepatitis C

Potential for Personalized Therapy
  • Julie R. Jonsson
  • David M. Purdie
  • Andrew D. Clouston
  • Elizabeth E. Powell
Infectious Disorders


Infection with hepatitis C virus (HCV) is a major cause of chronic liver disease. Hepatic fibrosis may develop in subjects with chronic HCV infection, culminating in cirrhosis and an increased risk of hepatocellular carcinoma. The rate of development of fibrosis varies substantially between individuals; while it is influenced by a number of demographic and environmental factors, these account for only a small proportion of the variability.

There are no clinical markers or tests that predict the rate of fibrosis progression in an individual subject. Thus, there has been increasing interest in the influence of host genetic factors on the rate of disease progression, and whether a genetic signature can be developed to reliably identify individuals at risk of severe disease. Numerous case-control, candidate gene, allele-association studies have examined the relationship between host single nucleotide polymorphisms or other genetic mutations and fibrosis in patients with chronic HCV infection. However, these studies have generally been irreproducible and disappointing. As seen with genetic studies for other diseases, small study cohorts and poor study design have contributed to limited meaningful findings. The successful determination of genetic signatures for fibrosis progression in chronic HCV will require multicenter collaborations using genome-wide association studies, with large, phenotypically well-defined sample sets. While these studies will require a significant financial commitment, a successful outcome offers the potential for personalized therapy and better patient management.


Sustained Virologic Response Antiviral Therapy Hepatic Fibrosis Sustained Virologic Response Rate Genetic Signature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding for the authors’ research was provided by the National Health and Medical Research Council of Australia, the Sasakawa Foundation (Royal Children’s Hospital), the Queensland Government’s Smart State Health and Medical Research Fund, and the Princess Alexandra Hospital Research and Development Foundation.

The authors have no conflicts of interest that are directly relevant to the content of this review.


  1. 1.
    WHO. Hepatitis C [online]. Available from URL: [Accessed 2008 Jul 4]
  2. 2.
    Marcellin P. Hepatitis C: the clinical spectrum of the disease. J Hepatol 1999; 31: 9–16PubMedCrossRefGoogle Scholar
  3. 3.
    Kim WR. The burden of hepatitis C in the United States. Hepatology 2002 Nov; 36(5): S30–4PubMedCrossRefGoogle Scholar
  4. 4.
    Wright M, Goldin R, Fabre A, et al. Measurement and determinants of the natural history of liver fibrosis in hepatitis C virus infection: a cross sectional and longitudinal study. Gut 2003 Apr; 52(4): 574–9PubMedCrossRefGoogle Scholar
  5. 5.
    Choo QL, Kuo G, Weiner AJ, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral-hepatitis genome. Science 1989 Apr; 244(4902): 359–62PubMedCrossRefGoogle Scholar
  6. 6.
    Penin F, Dubuisson J, Rey FA, et al. Structural biology of hepatitis C virus. Hepatology 2004 Jan; 39(1): 5–19PubMedCrossRefGoogle Scholar
  7. 7.
    Simmonds P, Bukh J, Combet C, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 2005 Oct; 42(4): 962–73PubMedCrossRefGoogle Scholar
  8. 8.
    Hughes CA, Shafran SD. Chronic hepatitis C virus management: 2000–2005 update. Ann Pharmacother 2006 Jan; 40(1): 74–82PubMedGoogle Scholar
  9. 9.
    Fried MW. Side effects of therapy of hepatitis C and their management. Hepatology 2002 Nov; 36(5): S237–44PubMedCrossRefGoogle Scholar
  10. 10.
    Russo MW, Fried MW. Side effects of therapy for chronic hepatitis C. Gastroenterology 2003 May; 124(6): 1711–9PubMedCrossRefGoogle Scholar
  11. 11.
    Tomer Y, Blackard JT, Akeno N. Interferon alpha treatment and thyroid dysfunction. Endocrinol Metab Clin North Am 2007 Dec; 36(4): 1051–61PubMedCrossRefGoogle Scholar
  12. 12.
    Manns MP, McHutchison JG, Gordon SC, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 2001 Sep; 358(9286): 958–65PubMedCrossRefGoogle Scholar
  13. 13.
    Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 2002 Sep; 347(13): 975–82PubMedCrossRefGoogle Scholar
  14. 14.
    Bressler BL, Guindi M, Tomlinson G, et al. High body mass index is an independent risk factor for nonresponse to antiviral treatment in chronic hepatitis C. Hepatology 2003 Sep; 38(3): 639–44PubMedCrossRefGoogle Scholar
  15. 15.
    Herrine SK, Rossi S, Navarro VJ. Management of patients with chronic hepatitis C infection. Clin Exper Med 2006 Mar; 6(1): 20–6CrossRefGoogle Scholar
  16. 16.
    Dienstag JL, McHutchison JG. American Gastroenterological Association technical review on the management of hepatitis C. Gastroenterology 2006 Jan; 130(1): 231–64PubMedCrossRefGoogle Scholar
  17. 17.
    Yee LJ. Host genetic determinants in hepatitis C virus infection. Genes Immun 2004 Jun; 5(4): 237–45PubMedCrossRefGoogle Scholar
  18. 18.
    Friedman SL. Liver fibrosis: from bench to bedside. J Hepatol 2003; 38Suppl. 1: S38–53PubMedCrossRefGoogle Scholar
  19. 19.
    Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol 2007 Oct; 47(4): 598–607PubMedCrossRefGoogle Scholar
  20. 20.
    Kleiner DE. The liver biopsy in chronic hepatitis C: a view from the other side of the microscope. Semin Liver Dis 2005 Feb; 25(1): 52–64PubMedCrossRefGoogle Scholar
  21. 21.
    Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. Lancet 1997 Mar; 349(9055): 825–32PubMedCrossRefGoogle Scholar
  22. 22.
    Poynard T, Ratziu V, Charlotte F, et al. Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis C. J Hepatol 2001 May; 34(5): 730–9PubMedCrossRefGoogle Scholar
  23. 23.
    Roudot-Thoraval F, Bastie A, Pawlotsky JM, et al. Epidemiological factors affecting the severity of hepatitis C virus-related liver disease: a French survey of 6,664 patients. Hepatology 1997 Aug; 26(2): 485–90PubMedCrossRefGoogle Scholar
  24. 24.
    Pontisso P, Gerotto M, Benvegnu L, et al. Coinfection by hepatitis B virus and hepatitis C virus. Antiviral Ther 1998; 3: 137–42Google Scholar
  25. 25.
    Tsai JF, Jeng JE, Ho MS, et al. Independent and additive effect modification of hepatitis C and B viruses infection on the development of chronic hepatitis. J Hepatol 1996 Mar; 24(3): 271–6PubMedCrossRefGoogle Scholar
  26. 26.
    Pol S, Fontaine H, Carnot F, et al. Predictive factors for development of cirrhosis in parenterally acquired chronic hepatitis C: a comparison between immunocompetent and immunocompromised patients. J Hepatol 1998 Jul; 29(1): 12–9PubMedCrossRefGoogle Scholar
  27. 27.
    Berenguer M, Ferrell L, Watson J, et al. HCV-related fibrosis progression following liver transplantation: increase in recent years. J Hepatol 2000 Apr; 32(4): 673–84PubMedCrossRefGoogle Scholar
  28. 28.
    Martin P, Dibisceglie AM, Kassianides C, et al. Rapidly progressive non-A, non-B hepatitis in patients with human immunodeficiency virus infection. Gastroenterology 1989 Dec; 97(6): 1559–61PubMedGoogle Scholar
  29. 29.
    Soto B, SanchezQuijano A, Rodrigo L, et al. Human immunodeficiency virus infection modifies the natural history of chronic parenterally-acquired hepatitis C with an unusually rapid progression to cirrhosis. J Hepatol 1997 Jan; 26(1): 1–5PubMedCrossRefGoogle Scholar
  30. 30.
    Hourigan LF, Macdonald GA, Purdie D, et al. Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology 1999 Apr; 29(4): 1215–9PubMedCrossRefGoogle Scholar
  31. 31.
    Adinolfi LE, Gambardella M, Andreana A, et al. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology 2001 Jun; 33(6): 1358–64PubMedCrossRefGoogle Scholar
  32. 32.
    Hickman IJ, Powell EE, Prins JB, et al. In overweight patients with chronic hepatitis C, circulating insulin is associated with hepatic fibrosis: implications for therapy. J Hepatol 2003 Dec; 39(6): 1042–8PubMedCrossRefGoogle Scholar
  33. 33.
    Fartoux L, Poujol-Robert A, Guechot J, et al. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut 2005 Jul; 54(7): 1003–8PubMedCrossRefGoogle Scholar
  34. 34.
    Seeff LB. Natural history of chronic hepatitis C. Hepatology 2002 Nov; 36(5): S35–46PubMedCrossRefGoogle Scholar
  35. 35.
    Massard J, Ratziu V, Thabut D, et al. Natural history and predictors of disease severity in chronic hepatitis C. J Hepatol 2006; 44: S19–24PubMedCrossRefGoogle Scholar
  36. 36.
    Teixeira R, Marcos LA, Friedman SL. Immunopathogenesis of hepatitis C infection and hepatic fibrosis: new insights into antifibrotic therapy in chronic hepatitis C. Hepatol Res 2007 Aug; 37(8): 579–95PubMedCrossRefGoogle Scholar
  37. 37.
    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005 Feb; 115(2): 209–18PubMedGoogle Scholar
  38. 38.
    Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008 May; 134(6): 1655–69PubMedCrossRefGoogle Scholar
  39. 39.
    Bataller R, North KE, Brenner DA. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 2003 Mar; 37(3): 493–503PubMedCrossRefGoogle Scholar
  40. 40.
    Feld JJ, Liang TJ. Hepatitis C: identifying patients with progressive liver injury. Hepatology 2006 Feb; 43(2): S194–206PubMedCrossRefGoogle Scholar
  41. 41.
    Asselah T, Bieche I, Paradis V, et al. Genetics, genomics, and proteomics: implications for the diagnosis and the treatment of chronic hepatitis C. Semin Liver Dis 2007 Feb; 27(1): 13–27PubMedCrossRefGoogle Scholar
  42. 42.
    Osterreicher CH, Stickel F, Brenner AA. Genomics of liver fibrosis and cirrhosis. Semin Liver Dis 2007 Feb; 27(1): 28–43PubMedCrossRefGoogle Scholar
  43. 43.
    Yee LJ, Tang J, Herrera J, et al. Tumor necrosis factor gene polymorphisms in patients with cirrhosis from chronic hepatitis C virus infection. Genes Immun 2000 Aug; 1(6): 386–90PubMedCrossRefGoogle Scholar
  44. 44.
    Valenti L, Pulixi E, Fracanzani AL, et al. TNF alpha genotype affects TNF alpha release, insulin sensitivity and the severity of liver disease in HCV chronic hepatitis. J Hepatol 2005 Dec; 43(6): 944–50PubMedCrossRefGoogle Scholar
  45. 45.
    Bahr MJ, el Menuawy M, Boeker KHW, et al. Cytokine gene polymorphisms and the susceptibility to liver cirrhosis in patients with chronic hepatitis C. Liver Int 2003 Dec; 23(6): 420–5PubMedCrossRefGoogle Scholar
  46. 46.
    Barrett S, Collins M, Kenny C, et al. Polymorphisms in tumour necrosis factor-alpha, transforming growth factor-beta, interleukin-10, interleukin-6, interferon-gamma, and outcome of hepatitis C virus infection. J Med Virol 2003 Oct; 71(2): 212–8PubMedCrossRefGoogle Scholar
  47. 47.
    Powell EE, Edwards-Smith CJ, Hay JL, et al. Host genetic factors influence disease progression in chronic hepatitis C. Hepatology 2000 Apr; 31(4): 828–33PubMedCrossRefGoogle Scholar
  48. 48.
    Rosen HR, McHutchison JG, Conrad AJ, et al. Tumor necrosis factor genetic polymorphisms and response to antiviral therapy in patients with chronic hepatitis C. Am J Gastroenterol 2002 Mar; 97(3): 714–20PubMedCrossRefGoogle Scholar
  49. 49.
    Yu ML, Dai CY, Chiu CC, et al. Tumor necrosis factor alpha promoter polymorphisms at position −308 in Taiwanese chronic hepatitis C patients treated with interferon-alpha. Antiviral Res 2003 Jun; 59(1): 35–40PubMedCrossRefGoogle Scholar
  50. 50.
    Paladino N, Fainboim H, Theiler G, et al. Gender susceptibility to chronic hepatitis C virus infection associated with interleukin 10 promoter polymorphism. J Virol 2006 Sep; 80(18): 9144–50PubMedCrossRefGoogle Scholar
  51. 51.
    Abbas Z, Moatter T, Hussainy A, et al. Effect of cytokine gene polymorphism on histological activity index, viral load and response to treatment in patients with chronic hepatitis C genotype 3. World J Gastroenterol 2005; 11: 6656–61PubMedGoogle Scholar
  52. 52.
    Knapp S, Hennig BJW, Frodsham AJ, et al. Interleukin-10 promoter polymorphisms and the outcome of hepatitis C virus infection. Immunogenetics 2003 Sep; 55(6): 362–9PubMedCrossRefGoogle Scholar
  53. 53.
    Abbott WGH, Rigopoulou E, Haigh P, et al. Single nucleotide polymorphisms in the interferon-gamma and interleukin-10 genes do not influence chronic hepatitis C severity or T-cell reactivity to hepatitis C virus. Liver Int 2004 Apr; 24(2): 90–7PubMedCrossRefGoogle Scholar
  54. 54.
    Hellier S, Frodsham AJ, Hennig BJW, et al. Association of genetic variants of the chemokine receptor MRS and its ligands, RANTES and MCP-2, with outcome of HCV infection. Hepatology 2003 Dec; 38(6): 1468–76PubMedGoogle Scholar
  55. 55.
    Richardson MM, Powell EE, Barrie HD, et al. A combination of genetic polymorphisms increases the risk of progressive disease in chronic hepatitis C. J Med Genet 2005 Jul; 42(7): 6CrossRefGoogle Scholar
  56. 56.
    Promrat K, McDermott DH, Gonzalez CM, et al. Associations of chemokine system polymorphisms with clinical outcomes and treatment responses of chronic hepatitis C. Gastroenterology 2003 Feb; 124(2): 352–60PubMedCrossRefGoogle Scholar
  57. 57.
    Wasmuth HE, Werth A, Mueller T, et al. CC chemokine receptor 5 Delta 32 polymorphism in two independent cohorts of hepatitis C virus infected patients without hemophilia. J Mol Med 2004 Jan; 82(1): 64–9PubMedCrossRefGoogle Scholar
  58. 58.
    Mascheretti S, Hinrichsen H, Ross S, et al. Genetic variants in the CCR gene cluster and spontaneous viral elimination in hepatitis C-infected patients. Clin Exper Immunol 2004 May; 136(2): 328–33CrossRefGoogle Scholar
  59. 59.
    Ruiz-Ferrer M, Barroso N, Antinolo G, et al. Analysis of CCR5-Delta 32 and CCR2-V64I polymorphisms in a cohort of Spanish HCV patients using realtime polymerase chain reaction and fluorescence resonance energy transfer technologies. J Viral Hepat 2004 Jul; 11(4): 319–23PubMedCrossRefGoogle Scholar
  60. 60.
    Goyal A, Suneetha PV, Kumar GT, et al. CCRS Delta 32 mutation does not influence the susceptibility to HCV infection, severity of liver disease and response to therapy in patients with chronic hepatitis C. World J Gastroenterol 2006 Aug; 12(29): 4721–6PubMedGoogle Scholar
  61. 61.
    Goulding C, Murphy A, MacDonald G, et al. The CCR5-D32 mutation: impact on disease outcome in individuals with hepatitis C infection from a single source. Gut 2005 Aug; 54(8): 1157–61PubMedCrossRefGoogle Scholar
  62. 62.
    Tag CG, Mengsteab S, Hellerbrand C, et al. Analysis of the transforming growth factor-beta 1 (TGF-beta 1) codon 25 gene polymorphism by LightCycler-analysis in patients with chronic hepatitis C infection. Cytokine 2003 Dec; 24(5): 173–81PubMedCrossRefGoogle Scholar
  63. 63.
    Muhlbauer M, Bosserhoff AK, Hartmann A, et al. A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease. Gastroenterology 2003 Oct; 125(4): 1085–93PubMedCrossRefGoogle Scholar
  64. 64.
    Glas J, Torok HP, Tonenchi L, et al. The-2518 promoter polymorphism in the MCP-1 gene is not associated with liver cirrhosis in chronic hepatitis C virus infection. Gastroenterology 2004 Jun; 126(7): 1930–1PubMedCrossRefGoogle Scholar
  65. 65.
    Bonkovsky HL, Salek J. No role of the-2518 promoter polymorphism of monocyte chemotactic protein-1 in chronic hepatitis C. Gastroenterology 2005 Oct; 129(4): 1361–2PubMedCrossRefGoogle Scholar
  66. 66.
    Petit JM, Masson D, Minello A, et al. Lack of association between microsomal triglyceride transfer protein gene polymorphism and liver steatosis in HCV-infected patients. Mol Genet Metab 2006 Jun; 88(2): 196–8PubMedCrossRefGoogle Scholar
  67. 67.
    Martinelli ALC, Franco RF, Villanova MG, et al. Are haemochromatosis mutations related to the severity of liver disease in hepatitis C virus infection? Acta Haematol 1999; 102(3): 152–6CrossRefGoogle Scholar
  68. 68.
    Smith BC, Grove J, Guzail MA, et al. Heterozygosity for hereditary hemochromatosis is associated with more fibrosis in chronic hepatitis C. Hepatology 1998 Jun; 27(6): 1695–9PubMedCrossRefGoogle Scholar
  69. 69.
    Erhardt A, Maschner-OIberg A, Mellenthin C, et al. HFE mutations and chronic hepatitis C: H63D and C282Y heterozygosity are independent risk factors for liver fibrosis and cirrhosis. J Hepatol 2003 Mar; 38(3): 335–42PubMedCrossRefGoogle Scholar
  70. 70.
    Gehrke SG, Stremmel W, Mathes I, et al. Hemochromatosis and transferrin receptor gene polymorphisms in chronic hepatitis C: impact on iron status, liver injury and HCV genotype. J Mol Med 2003 Dec; 81(12): 780–7PubMedCrossRefGoogle Scholar
  71. 71.
    Hezode C, Cazeneuve C, Coue O, et al. Liver iron accumulation in patients with chronic active hepatitis C: prevalence and role of hemochromatosis gene mutations and relationship with hepatic histological lesions. J Hepatol 1999 Dec; 31(6): 979–84PubMedCrossRefGoogle Scholar
  72. 72.
    Thorburn D, Curry G, Spooner R, et al. The role of iron and haemochromatosis gene mutations in the progression of liver disease in chronic hepatitis C. Gut 2002; 50(2): 248–52PubMedCrossRefGoogle Scholar
  73. 73.
    Lebray P, Zylberberg H, Hue S, et al. Influence of HFE gene polymorphism on the progression and treatment of chronic hepatitis C. J Viral Hepat 2004 Mar; 11(2): 175–82PubMedCrossRefGoogle Scholar
  74. 74.
    Forrest EH, Thorburn D, Spence E, et al. Polymorphisms of the renin-angiotensin system and the severity of fibrosis in chronic hepatitis C virus infection. J Viral Hepat 2005 Sep; 12(5): 519–24PubMedCrossRefGoogle Scholar
  75. 75.
    Baker SJ, Reddy EP. Modulation of life and death by the TNF receptor superfamily. Oncogene 1998 Dec; 17(25): 3261–70PubMedCrossRefGoogle Scholar
  76. 76.
    Verrecchia F, Mauviel A. TGF-beta and TNF-alpha: antagonistic cytokines controlling type I collagen gene expression. Cell Signal 2004 Aug; 16(8): 873–80PubMedCrossRefGoogle Scholar
  77. 77.
    Moore KW, Malefyt RD, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor. Ann Rev Immunol 2001; 19: 683–765CrossRefGoogle Scholar
  78. 78.
    Wang SC, Ohata M, Schrum L, et al. Expression of interleukin-10 by in vitro and in vivo activated hepatic stellate cells. J Biol Chem 1998 Jan; 273(1): 302–8PubMedCrossRefGoogle Scholar
  79. 79.
    Turner DM, Williams DM, Sankaran D, et al. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 1997 Feb; 24(1): 1–8PubMedCrossRefGoogle Scholar
  80. 80.
    Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996 Aug; 86(3): 367–77PubMedCrossRefGoogle Scholar
  81. 81.
    Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382(6593): 722–5PubMedCrossRefGoogle Scholar
  82. 82.
    Bedossa P, Paradis V. Transforming growth factor-beta (TBF-beta): a key role in liver fibrogenesis. J Hepatol 1995; 22: 37–42PubMedCrossRefGoogle Scholar
  83. 83.
    Awad MR, El Gamel A, Hasleton P, et al. Genotypic variation in the transforming growth factor-betal gene: association with transforming growth factor-pi production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 1998 Oct; 66(8): 1014–20PubMedCrossRefGoogle Scholar
  84. 84.
    Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol 1997; 15: 675–705PubMedCrossRefGoogle Scholar
  85. 85.
    Marra F, Romanelli RG, Giannini C, et al. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 1999 Jan; 29(1): 140–8PubMedCrossRefGoogle Scholar
  86. 86.
    Rovin BH, Lu L, Saxena R. A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun 1999 Jun; 259(2): 344–8PubMedCrossRefGoogle Scholar
  87. 87.
    Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet 1996 Aug; 13(4): 399–408PubMedCrossRefGoogle Scholar
  88. 88.
    Powell LW, Subramaniam VN, Yapp TR. Haemochromatosis in the new millennium. J Hepatol 2000; 32: 48–62PubMedCrossRefGoogle Scholar
  89. 89.
    Bomford A. Genetics of haemochromatosis. Lancet 2002 Nov; 360(9346): 1673–81PubMedCrossRefGoogle Scholar
  90. 90.
    Pietrangelo A. Iron-induced oxidant stress in alcoholic liver fibrogenesis. Alcohol 2003 Jun; 30(2): 121–9PubMedCrossRefGoogle Scholar
  91. 91.
    Tung BY, Emond MJ, Bronner MP, et al. Hepatitis C, iron status, and disease severity: relationship with HFE mutations. Gastroenterology 2003 Feb; 124(2): 318–26PubMedCrossRefGoogle Scholar
  92. 92.
    Noble NA, Border WA. Angiotensin II in renal fibrosis: should TGF-beta rather than blood pressure be the therapeutic target? Semin Nephrol 1997 Sep; 17(5): 455–66PubMedGoogle Scholar
  93. 93.
    Inoue I, Nakajima T, Williams CS, et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997 Apr; 99(7): 1786–97PubMedCrossRefGoogle Scholar
  94. 94.
    Ioannidis JPA. Genetic associations: false or true? Trends Mol Med 2003 Apr; 9(4): 135–8PubMedCrossRefGoogle Scholar
  95. 95.
    Todd JA. Statistical false positive or true disease pathway? Nature Genet 2006 Jul; 38(7): 731–3PubMedCrossRefGoogle Scholar
  96. 96.
    Huang HJ, Shiffman ML, Friedman S, et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 2007 Aug; 46(2): 297–306PubMedCrossRefGoogle Scholar
  97. 97.
    Jorgenson E, Witte JS. A gene-centric approach to genome-wide association studies. Nature Rev Genet 2006 Nov; 7(11): 885–91PubMedCrossRefGoogle Scholar
  98. 98.
    Frayling TM. Commentary: genetic association studies see light at the end of the tunnel. Int J Epidemiol 2008 Feb; 37(1): 133–5PubMedCrossRefGoogle Scholar
  99. 99.
    Ioannidis JP, Boffetta P, Little J, et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 2008 Feb; 37(1): 120–32PubMedCrossRefGoogle Scholar
  100. 100.
    Fattovich G, Giustina G, Degos F, et al. Morbidity and mortality in compensated cirrhosis type C: a retrospective follow-up study of 384 patients. Gastroenterology 1997 Feb; 112(2): 463–72PubMedCrossRefGoogle Scholar
  101. 101.
    Poustchi H, Negro F, Hui J, et al. Insulin resistance and response to therapy in patients infected with chronic hepatitis C virus genotypes 2 and 3. J Hepatol 2008 Jan; 48(1): 28–34PubMedCrossRefGoogle Scholar
  102. 102.
    Walsh MJ, Jonsson JR, Richardson MM, et al. Non-response to antiviral therapy is associated with obesity and increased hepatic expression of suppressor of cytokine signalling 3 (SOCS-3) in patients with chronic hepatitis C, viral genotype 1. Gut 2006 Apr; 55(4): 529–35PubMedCrossRefGoogle Scholar
  103. 103.
    Jonsson JR, Clouston AD, Ando Y, et al. Angiotensin-converting enzyme inhibition attenuates the progression of rat hepatic fibrosis. Gastroenterology 2001 Jul; 121(1): 148–55PubMedCrossRefGoogle Scholar
  104. 104.
    Paizis G, Gilbert RE, Cooper ME, et al. Effect of angiotensin II type 1 receptor blockade on experimental hepatic fibrogenesis. J Hepatol 2001 Sep; 35(3): 376–85PubMedCrossRefGoogle Scholar
  105. 105.
    Terui Y, Saito T, Watanabe H, et al. Effect of angiotensin receptor antagonist on liver fibrosis in early stages of chronic hepatitis C. Hepatology 2002 Oct; 36(4): 1022PubMedCrossRefGoogle Scholar
  106. 106.
    Yokohama S, Yoneda M, Haneda M, et al. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 2004 Nov; 40(5): 1222–5PubMedCrossRefGoogle Scholar
  107. 107.
    Friedman SL, Bansal MB. Reversal of hepatic fibrosis: fact or fantasy? Hepatology 2006 Feb; 43(2): S82–8PubMedCrossRefGoogle Scholar
  108. 108.
    Burchard EG, Ziv E, Coyle N, et al. The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 2003 Mar; 348(12): 1170–5PubMedCrossRefGoogle Scholar
  109. 109.
    Lazarus R, Vercelli D, Palmer LJ, et al. Single nucleotide polymorphisms in innate immunity genes: abundant variation and potential role in complex human disease. Immunol Rev 2002 Dec; 190(1): 9–25PubMedCrossRefGoogle Scholar
  110. 110.
    Amos CI. Successful design and conduct of genome-wide association studies. Hum Mol Genet 2007 Oct; 16: R220–5PubMedCrossRefGoogle Scholar
  111. 111.
    Powell EE, Jonsson JR, Clouston AD. Steatosis: co-factor in other liver diseases. Hepatology 2005 Jul; 42(1): 5–13PubMedCrossRefGoogle Scholar
  112. 112.
    Paradis V, Mathurin P, Laurent A, et al. Histological features predictive of liver fibrosis in chronic hepatitis C infection. J Clin Pathol 1996 Dec; 49(12): 998–1004PubMedCrossRefGoogle Scholar
  113. 113.
    El-Serag HB, White DL, Mitra N. Genetic association studies: from “searching under the lamppost” to “fishing in the pond”. Gastroenterology 2008; 134(3): 662–4PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  • Julie R. Jonsson
    • 1
  • David M. Purdie
    • 2
  • Andrew D. Clouston
    • 1
  • Elizabeth E. Powell
    • 1
    • 3
  1. 1.School of Medicine, Southern DivisionUniversity of QueenslandBrisbaneAustralia
  2. 2.Genentech Inc.San FranciscoUSA
  3. 3.Department of Gastroenterology and HepatologyPrincess Alexandra HospitalBrisbane

Personalised recommendations