Annales Des Télécommunications

, Volume 62, Issue 9–10, pp 1171–1184 | Cite as

Decoupled estimation of angular parameters for coherently distributed sources

  • Ahmed Zoubir
  • Yide Wang
  • Mohamed M. Ould Haiballa
  • Pascal Chargé


In this paper, we consider the problem of estimating the direction-of-arrivals (doas) and angular spreads of uncorrelated coherently distributed sources. The proposed methods enable a decoupled estimation of the doas from that of the angular spreads of sources. Compared with existing algorithms, the proposed algorithms improve the robustness to the mismodeling of the spatial distribution of the scatterers. They allow an unambiguous doas estimation and don’t need the a priori knowledge of the azimutal power distribution. Furthermore, the proposed techniques work even in the case where the different sources have different angular distribution shape.

Key words

Antenna array Beamforming Linear antenna Arrival angle Spatial distribution Multipath propagation Wave coherence 

Estimation découplée des paramètres angulaires pour des sources distribuées avec cohérence


Dans cet article on considère le problème d’estimation des directions d’arrivée (dda) et des étalements angulaires de sources décorrélées distribuées avec cohérence. Les techniques proposées permettent d’estimer ces paramètres angulaires de façon séparée. Par comparaison avec des techniques existantes, ces nouvelles méthodes n’exigent pas la connaissance des distributions angulaires des réflecteurs, en particulier pour l’estimation des dda. Notons que ces méthodes sont capables de fonctionner lorsque les différentes sources ont des distributions azimutales différentes, contrairement aux méthodes existantes.

Mots clés

Antenne réseau Mise forme faisceau Antenne rectiligne Angle arrivée Distribution spatiale Propagation trajet multiple Cohérence onde 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zetterberg P., “Mobile cellular communications with base station antenna arrays: Spectrum, algorithms and propagation models”, PhD thesis, Royal Institute of technology, Sweden, 1997.Google Scholar
  2. [2]
    Pedersen K.I., Mogensen P.E., Fleury B. H., “A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments”, IEEE Transaction Veh. Technology, vol. 49, pp. 437–447, Mar. 2000.Google Scholar
  3. [3]
    Valaee S., Champagne B., Kabal P., “Parametric localization of distributed sources”, IEEE Trans. on Signal Processing, vol. 43, pp. 2144–2153, Sept. 1995.Google Scholar
  4. [4]
    Bengtsson M., “Antenna array signal processing for high rank models”, PhD thesis, Royal Institue of technology, Sweden, 1999.Google Scholar
  5. [5]
    Hassanien A., Shahbazpanahi S., Gershman A.B., “A generalized Capon estimator for localization of multiple spread sources”, IEEE Transaction on signal processing, vol. 52(1), pp. 280–283, January 2004.MathSciNetGoogle Scholar
  6. [6]
    Capon J., “High resolution frequency-wavenumber spectrum analysis”, Proc. IEEE, volume 57, pp. 1408–1418, August 1969.Google Scholar
  7. [7]
    Besson O., Stoica P., “Decoupled estimation of doa and angular spread for a spatially distributed source”, IEEE Trans. on signal processing, vol. 48(7), pp. 1872–1882, July 2000.MATHGoogle Scholar
  8. [8]
    Zoubir A., Wang Y., Chargé P., “On the ambiguity of comet-exip algorithm for estimating a scattered source”, Proc. of ICASSP, March 2005.Google Scholar
  9. [9]
    Lee J., Song I., Kwon H., Lee S., “Low-complexity estimation of 2D doa for coherently distributed sources”, Elsevier Signal Processing, 83, pp. 1789–1802, 2003.MATHGoogle Scholar
  10. [10]
    Wan Q., Liu S. J., Ge F.X., Yuan J., Peng Y. N., “doa estimator for multiple coherently distributed sources with symmetric angular distribution”, In Proc. of Vehicular Technology Conference VTC 2003, vol. 1, pp. 213–216, April 2003.Google Scholar
  11. [11]
    Zoubir A., Wang Y, Chargé P., “The generalized beamforming techniques for estimating the coherently distributed sources”, In Proc. of 8th European Conference on Wireless Technology, pp. 157–160, Paris, October 2005.Google Scholar
  12. [12]
    Ghogho M., Besson O., Swami A., “Estimation of directions of arrival of multiple scattered sources”, IEEE Transaction on Signal Processing, vol. 49, pp. 2467–2479, November 2001.Google Scholar
  13. [13]
    Fletcher R., Powell M.J.D., “A Rapidly Convergent Descent Method for Minimization”, Computer Journal, vol. 6, pp. 163–168, 1963.MathSciNetMATHGoogle Scholar
  14. [14]
    Goldfarb D., “A Family of Variable Metric Updates Derived by Variational Means”, Mathematics of Computing, vol. 24, pp. 23–26, 1970.MathSciNetMATHGoogle Scholar
  15. [15]
    Han S.P., “A Globally Convergent Method for Nonlinear Programming”, Journal of Optimization Theory and Applications, vol. 22, pp. 297, 1977.MATHGoogle Scholar
  16. [16]
    Powell M.J.D., “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations”, Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Springer Verlag, vol. 630, 1978.Google Scholar
  17. [17]
    Powell M. J.D., “The Convergence of Variable Metric Methods For Nonlinearly Constrained Optimization Calculations”, Nonlinear Programming 3 (O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, eds.), Academic Press, 1978.Google Scholar
  18. [18]
    Gill P.E., Murray W., Wright M.H., “Practical Optimization”, London, Academic Press, 1981.Google Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 2007

Authors and Affiliations

  • Ahmed Zoubir
    • 1
  • Yide Wang
    • 2
  • Mohamed M. Ould Haiballa
    • 1
    • 2
  • Pascal Chargé
    • 3
  1. 1.IREENA École polytechniqueUniversity of NantesNantesFrance
  2. 2.SSC, FSTUniversity of Sidi Mohamed Ben AbdellahFezMorocco
  3. 3.LATTIS, INSAToulouse Cedex 4France

Personalised recommendations