, Volume 47, Issue 2, pp 135–140 | Cite as

Intelligente Tourenplanung mit DynaRoute

  • Oliver Wendt
  • Tim Stockheim
  • Kilian Weiss
WI — Innovatives Produkt

Advanced Transport Planning with DynaRoute


Due to increasing transportation costs and a rising demand for quality services professional optimization and planning of transport processes becomes a critical success factor for many companies. This article provides a detailed description of the software DynaRoute, capable to reduce transportation costs and at the same time increase customer satisfaction. The main results are:
  1. Effective planning software enables companies to reduce transport costs by 10% and more while significantly improving service quality for the customer.

  2. A successful implementation of the software often requires organizational changes in the affected business processes.

  3. DynaRoute provides companies with the flexibility to take individual planning criteria into account.

  4. Advanced learning models allow for highly improved travel time predictions and this way increase the timeliness of deliveries.



Transport Planning Stochastic Optimization Travel Time Prediction Neural Gas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BuHS99]
    Bullnheimer, B.; Hartl, R. F.; Strauss, C.: An Improved Ant System Algorithm for the Vehicle Routing Problem. In: Annals of Operations Research 89 (1999), S. 319–328.Google Scholar
  2. [Bund04]
    Bundesamt für Güterverkehr: Jahresbericht 2003. Köln 2004.Google Scholar
  3. [CDDS02]
    Cordeau, J.; Desaulniers, G.; Desrosiers, J.; Solomon, M.; Soumis, F.: The Vehicle Routing Problem. In: SIAM Monographs on Discrete Mathematics and Applications (2002).Google Scholar
  4. [Frit93]
    Fritzke, B.: Vector Quantization with a Growing and Splitting Elastic Net. In: Proceedings of the International Conference on Artificial Networks ICAN ’93. Amsterdam 1993.Google Scholar
  5. [GeLS96]
    Gendreau, M.; Laporte, G.; Seguin, R.: Stochastic Vehicle Routing. In: European Journal of Operational Research 88 (1996) 1, S. 3–12.Google Scholar
  6. [Glov86]
    Glover, F.: Future Paths for Integer Programming and Links to Artificial Intelligence. In: Computers and Operations Research 5 (1986), S. 533–549.Google Scholar
  7. [LiLi03]
    Li, H., Lim, A.: Local Search with Annealing-like Restarts to Solve the VRPTW. In: European Journal of Operational Research 150 (2003), S. 115–127.Google Scholar
  8. [SeTa93]
    Semet, F.; Taillard, E.: Solving Real-life Vehicle Routing Problems Efficiently Using Tabu Search. In: Annals of Operations Research 41 (1993), S. 469–488.Google Scholar
  9. [Stat04]
    Statistisches Bundesamt: Statistischer Wochenbericht, 51. Kalenderwoche. Wiesbaden 2004.Google Scholar
  10. [Wend95]
    Wendt, O.: Tourenplanung durch Einsatz Naturanaloger Verfahren. In: Isermann, H. (Hrsg.): Logistik und Verkehr. Gabler, Wiesbaden 1995.Google Scholar
  11. [WKSL05]
    Wendt, O.; König W.; Stockheim, T.; Lanninger V.; Weiss, K.: Transportplanung der Zukunft — Eine Empirische Untersuchung 1.000 Deutscher Unternehmen. Frankfurt 2005.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2005

Authors and Affiliations

  1. 1.Lehrstuhl für WirtschaftsinformatikTechnische Universität KaiserslauternKaiserslauternDeutschland
  2. 2.VARLOGFrankfurt (Main)Deutschland

Personalised recommendations