Advertisement

Journal of the Iranian Chemical Society

, Volume 2, Issue 2, pp 161–167 | Cite as

Spectrophotometric determination of vanadium using variamine blue and its application to synthetic, environmental and biological samples

  • T. N. Kiran Kumar
  • H. D. Revanasiddappa
Article

Abstract

A simple, rapid and accurate spectrophotometric method is described for the determination of trace amounts of vanadium using variamine blue (VB) as a chromogenic reagent. The method is based on the oxidation of variamine blue to form a violetcolored species on reaction with vanadium(V), having an absorption maximum at 570 nm. Beer’s law is obeyed in the range of 0.1–2.0 μg ml−1. The molar absorptivity and Sandell’s sensitivity were found to be 1.65 × 104 l mol−1 cm−1 and 0.003 μg cm−2, respectively. Optimum reaction conditions were evaluated in order to delimit the linear range. The effect of interfering ions on the determination is described. The proposed method has been successfully applied to the determination of vanadium in steel, pharmaceutical, environmental, and biological samples.

Keyword

Spectrophotometry Vanadium determination Variamine blue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Patel, G.E. Henderson, S.J. Haswell, R. Grzeskowiak, Analyst 115 (1990) 1063.Google Scholar
  2. [2]
    I.M. Kolthoff, P.I. Elving, F.H. Stross, Treatise on Analytical Chemistry, Part III, Vol. 2, Wiley Interscience, New York, 1971, p. 89.Google Scholar
  3. [3]
    F.A. Patty, Industrial Hygiene and Toxicology; Vol. II, Interscience Publishers, New York, 1963, p. 1171.Google Scholar
  4. [4]
    APHA, Standard Methods for the Examination of Water and Wastewater, 19th Edn., American Public Health Association, Washington DC, 1995, p. 3–101.Google Scholar
  5. [5]
    H. Helmut, Metal Ions in Biological Systems Vol. 6,, Marcel Dekker Inc, New York, 1976.Google Scholar
  6. [6]
    K.R. Paul, V.K. Gupta, Am. Ind. Hyg. Assoc. J. 43 (1982) 529.Google Scholar
  7. [7]
    M.J.C. Taylor, J.F. van Staden, Analyst 119 (1994) 1263.Google Scholar
  8. [8]
    H.A. Mottola, D. Perez-Bendito, Anal. Chem. 66 (1994) 131R.Google Scholar
  9. [9]
    K. Luxmi Varma, M.P.L Reddy, T. Prasad Rao, Chem. Anal. (Warsaw) 45 (2000) 745.Google Scholar
  10. [10]
    N. Agnihotri, R. Dass, J.R. Mehta, Anal. Sci. 15 (1999) 1261.Google Scholar
  11. [11]
    M.J. Ahmed, S. Banoo, Talanta 48 (1999) 1085.Google Scholar
  12. [12]
    T.S. Sikalos, Y.M. Arabatzis, M.I. Prodromidis, P.G. Veltsistas, M.I. Karayannis, Mikrochim. Acta 135 (2000) 197.Google Scholar
  13. [13]
    A.A. Mohamed, K.F. Fawy, Anal. Sci.17 (2001) 769.Google Scholar
  14. [14]
    Z. Marczenko, Separation and Spectrophotometric Determination of Elements, 2nd Edn., Ellis Harwood Ltd., Chickester, England, 1986, p 627.Google Scholar
  15. [15]
    R.G. Wuilloud, J.A. Salomia, R.A. Olsima, L.D. Martinez, Spectrochim Acta Part B: Atom Spectr. 55 (2000) 671.Google Scholar
  16. [16]
    A.A. Ensafi, B. Naderi, Fresenius’ J. Anal. Chem. 358 (1997) 480.Google Scholar
  17. [17]
    T. Yanashige, M. Yananoto, H. Sunahara, Analyst 114 (1989) 1071.Google Scholar
  18. [18]
    Edmund Bishop (Ed.), Indicators, Pergamon Press Ltd., Oxford, Inc., New York, 1972, p. 395.Google Scholar
  19. [19]
    M.L. Jackson, Soil Chemical Analysis, Prentice-Hall, Englewood Cliffs, 1987, p. 326.Google Scholar
  20. [20]
    S.A. Abbasi, Anal. Lett. 20 (1987) 1347.Google Scholar
  21. [21]
    D. Glick (Ed.), Methods of Biochemical Analysis, John Wiley, Vol. 21, 1973, p. 39.Google Scholar
  22. [22]
    A.A. Mohamed, M.F. El-Shahat, Anal. Sci. 16 (2000) 151.Google Scholar

Copyright information

© Iranian Chemical Society 2005

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MysoreManasagangothri, MysoreIndia

Personalised recommendations