Advertisement

Journal of the Iranian Chemical Society

, Volume 6, Issue 1, pp 71–76 | Cite as

Cathodic stripping voltammetry of pipemidic acid and ofloxacin in pharmaceutical dosages and human urine

  • A. R. Solangi
  • A. Mallah
  • M. Y. Khuhawar
  • M. I. Bhanger
Article

Abstract

Sensitive cathodic stripping voltammetric methods have been developed for two quinolone antibacterial drugs, pipemidic acid (PIP) and ofloxacin (OFL) using hanging mercury drop electrode as working electrode vs. Ag/AgCl reference electrode. The methods were developed for the determination of drugs individually as well as simultaneously. 0.1 M and 0.01 M hydrochloric acid was used as medium for PIP and OFL, respectively, 0.1 M potassium chloride was used as base electrolyte. Reduction waves were observed for PIP within −700 mV to −800 mV and for OFL within −1100 mV to −1200 mV. Linear calibration ranges for PIP and OFL were observed within 10–100 μg ml−1 with detection limits of 50 ng ml−1 and 1 μg ml−1, respectively. Relative standard deviations (RSD) for the analysis of 10 gµg ml−1 of PIP and OFL (n = 6) were 0.5% and 1.4%, respectively. The presence of glucose, lactose, sorbitol, gum arabic, starch, magnesium stearate, methylparaben and propylparaben did not affect the determinations of both PIP and OFL. The methods were used for the analysis of pharmaceutical preparations and the results indicated relative deviation of 0.5–5.5% from labeled values with RSD within 0.49–2.5%. PIP and OFL could also be determined simultaneously, and were determined from spiked human urine.

Cathodic stripping voltammetry Quinolones Pipemidic acid and ofloxacin Determination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Suh, B. Lorber, Med. Clin. N. Am. 79 (1995) 869.Google Scholar
  2. [2]
    C.E. Greene, S.C. Budsberg, in: D.C. Hooper, J.S. Wolfson (Eds.), Quinolone Antibacterial Agents, 2nd ed., American Society for Microbiology, Washington DC., 1993.Google Scholar
  3. [3]
    G.H. Ragab, A.S. Amin, Spectrochim. Acta A 60 (2004) 973.Google Scholar
  4. [4]
    C.J. Eboka, S.O. Aigbavboa, J.O. Akerele, J. Antimicrob. Chemoth. 39 (1997) 639.Google Scholar
  5. [5]
    M.S. García, M.I. Albero, C. Sánchez-Pedreño, M.S. Abuherba, Eur. J. Pharm. Biopharm. 61 (2005) 87.Google Scholar
  6. [6]
    P.A. Bhanu, R.N. Rami, R.Y.V. Bhashar, I.E. Chakravarthy, Asian J. Chem. 16 (2004) 1905.Google Scholar
  7. [7]
    S.C. Mathur, Y. Kumar, N. Murugesan, Y.K.S. Rathore, P.D. Sethi, Indian Drugs 29 (1992) 376.Google Scholar
  8. [8]
    F.A. El-Yazbi, Spectrosc. Lett. 25 (1992) 279.Google Scholar
  9. [9]
    L. da Silveira Ev, E.S. Schapoval, R.D. Elfrides, E. de. F. Barroso, J. Pharm. Biomed. Anal. 27 (2002) 91.Google Scholar
  10. [10]
    I. Duran-Meras, A. Munoz De La Pena, F.S. Lopez, M.I. Rodriguez Caceres, J. Incl. Phenom. 51 (2005) 137.Google Scholar
  11. [11]
    D.L. Ming, Y.Y. Qin, W.Q. Mei, Anal. Chim. Acta 516 (2004) 237.Google Scholar
  12. [12]
    Q.J. Gong, J.L. Qiao, L.M. Du, C. Dong, W.J. Jin, Talanta 53 (2000) 359.Google Scholar
  13. [13]
    H. Nakata, K. Kannan, P.D. Jones, J.P. Giesy, Chemosphere. 58 (2005) 759.Google Scholar
  14. [14]
    O. Ballesteros, V. Sanz-Nebot, A. Navalon, J.L. Vilchez, J. Barbosa, Chromatographia. 59 (2004) 543.Google Scholar
  15. [15]
    I. Pecorelli, R. Galarini, R. Bibi, A. Floridi, E. Casciarri, A. Floridi, Anal. Chim. Acta 483 (2003) 81.Google Scholar
  16. [16]
    C. Immanuel, H. Kumar, J. Chromatogr. B 760 (2001) 91.Google Scholar
  17. [17]
    U.P. Halkar, P.B. Ankalkope, Indian Drugs 37 (2000) 585.Google Scholar
  18. [18]
    P.S. Francis, J.L. Adcock, Anal. Chim. Acta 541 (2005) 3.Google Scholar
  19. [19]
    L. Xia, Q. Hong, W. Xiao-li, C. Shi-lu, Z. Hui-chun, Guang Pu Xue Yu Guang Pu Fen Xi 24 (2004) 1518.Google Scholar
  20. [20]
    L. Yao-Dong, S. Jun-Feng, Anal. Bioanal. Chem. 380 (2004) 918.Google Scholar
  21. [21]
    L. Baoxin, Z. Zhujun, Z. Lixia, X. Chunli, Anal. Chim. Acta 459 (2002) 19.Google Scholar
  22. [22]
    Y. Rao, Y. Tong, X. Zhang, G. Luo, W.R.G. Baeyens, Anal. Chim. Acta 416 (2000) 227.Google Scholar
  23. [23]
    A. Tamer, Acta Pharma. Turc. 32 (1990) 141; Anal. Abstr. 53 (1991) 10 G 46.Google Scholar
  24. [24]
    Y.-N. He, H.-Y. Chen, Electroanalysis 9 (1997) 1426.Google Scholar
  25. [25]
    M. Telting-Diaz, A.J.M. Ordieres, A.C. Garcia, P.T. Blanco, Analyst 115 (1990) 1215.Google Scholar
  26. [26]
    S.M. Zhang, C.X. He, X. Yu, X.L. Wang, F. Huaxue, 23 (1997) 1177; Anal. Abstr. 60 (1998) 5 G 63.Google Scholar
  27. [27]
    G. Zhou, J. Pan, Anal. Chim. Acta 307 (1995) 49.Google Scholar
  28. [28]
    M. Rizk, F. Belal, F.A. Aly, N.M. El-Enany, Talanta 46 (1998) 83.Google Scholar
  29. [29]
    V. Kapetanovic, L. Milovanovic, M. Erceg, Talanta 43 (1996) 2123.Google Scholar

Copyright information

© Iranian Chemical Society 2009

Authors and Affiliations

  • A. R. Solangi
    • 1
  • A. Mallah
    • 2
  • M. Y. Khuhawar
    • 2
  • M. I. Bhanger
    • 1
  1. 1.National Center of Excellence in Analytical ChemistryUniversity of SindhJamshoroPakistan
  2. 2.M.A. Kazi Institute of ChemistryUniversity of SindhJamshoroPakistan

Personalised recommendations