Advertisement

Journal of the Iranian Chemical Society

, Volume 8, Issue 1, pp 131–141 | Cite as

Efficient dichloromethylation of some aromatic hydrocarbons catalyzed by a new ionic liquid [C12minPEG800]Br under homogeneous catalysis in aqueous media

  • Y. L. Hu
  • X. Liu
  • T. T. Lu
  • M. Lu
  • Q. Ge
  • S. B. Zhang
Article

Abstract

A series of new imidazolium-type ionic liquids based on polyethylene glycol have been prepared. The new recyclable temperature-dependant phase-separation system comprised of [C12minPEG800]Br and methylcyclohexane was also developed and successfully applied to the dichloromethylation of some aromatic hydrocarbons to prepare dichloromethyl-substituted hydrocarbons in excellent yields. The ionic liquid could be excellent recycled without any apparent loss of catalytic activity and little loss of weight even after 8 times recycling.

Keywords

Aromatic hydrocarbons Dichloromethylation [C12minPEGn]Br Temperature-dependent ionic liquid biphasic system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.H. Szmant, J. Dudek, J. Am. Chem. Soc. 71 (1949) 3763.Google Scholar
  2. [2]
    C.A. Mcnamara, M.J. Dixon, M. Bradley, Chem. Rev. 102 (2002) 3275.Google Scholar
  3. [3]
    G.A. Olah, M.R. Bruce, J. Am. Chem. Soc. 101 (1979) 4765.Google Scholar
  4. [4]
    N. Rabjohn, J. Am. Chem. Soc. 76 (1954) 5479.Google Scholar
  5. [5]
    W.G.J. De Pierri, H.W. Eahart, U.S. Patent 2964573, 1960.Google Scholar
  6. [6]
    M. Selva, F. Trotta, P. Tundo, Synthesis (1991) 1003.Google Scholar
  7. [7]
    M. Gerisch, J.R. Krumper, R.G. Bergman, T.D. Tilley, Organometallics 22 (2003) 47.Google Scholar
  8. [8]
    G.A. Olah, Friedel Crafts and Related Reactions, Part 2, John Wiley, New York, 1964, Vol. 2, pp. 659.Google Scholar
  9. [9]
    M. Wakae, K. Konishi, Yuki Gosei Kagaku Kyoukaishi 14 (1956) 615.Google Scholar
  10. [10]
    R. Granger, H. Orzalesi, A. Muratelle, Compt. Rend. 249 (1959) 2337.Google Scholar
  11. [11]
    A.A. Vansheidt, E.P. Melnikova, A.T. Yu, Zh. Prikl. Khim. 34 (1961) 705.Google Scholar
  12. [12]
    S. Suyama, H. Ishigaki, J.P. Patent 53009724, 1978.Google Scholar
  13. [13]
    T. Kishida, T. Yamauchi, Y. Kubota, Green Chem. 6 (2004) 57.Google Scholar
  14. [14]
    K. Yamauchi, T. Kishida, Y. Sugi, Y. Kubota, J.P. Patent 2004002333, 2004.Google Scholar
  15. [15]
    T. Kishida, T. Yamauchi, K. Komura, Y. Kubota, Y. Sugi, J. Mol. Catal. A: Chem. 46 (2006) 268.Google Scholar
  16. [16]
    P.T. Anastas, T.C.E. Williamson, Green Chemistry: Frontiers in Benign Chemical Synthesis and Processes, Oxford University Press, Oxford, 1998.Google Scholar
  17. [17]a)
    Q.F. Liu, M. Lu, Y.Q. Li, J. Mol. Catal. A: Chem. 277 (2007) 113Google Scholar
  18. b).
    Q.F. Liu, W. Wei, M. Lu, F. Sun, J. Li, Y.C. Zhang, Catal. Lett. 131 (2009) 485Google Scholar
  19. c).
    Y.L. Hu, M. Lu, Q.F. Liu, W. Wei, X. Liu, J. Iran. Chem. Soc. 7 (2010) 487.CrossRefGoogle Scholar
  20. [18]
    C.G. Oh, J.H.A. Ahn, S.K. Ihm, Reactive and Functional Polmers 57 (2003) 103.Google Scholar
  21. [19]
    J.E. Snow, U.S. Patent 2859253, 1958.Google Scholar
  22. [20]
    T. Horie, K. Yoshida, N. Takayama, Y. Kaysuyama, J.P. Patent 48026739, 1973.Google Scholar
  23. [21]
    I. Hirao, T. Matsuura, K. Ota, Yuki Gosei Kagaku Kyoukaishi 23 (1965) 248.Google Scholar
  24. [22]
    K. Yamauchi, T. Yonetani, K. Iwai, Y. Sugi, K. Komura, J.P. Patent 2006266549, 2006.Google Scholar
  25. [23]
    K. Yamauchi, K. Iwai, T. Kishida, T. Yonetani, K. Hashimoto, Y. Sugi, Y. Kubota, J.P. Patent 2005239643, 2005.Google Scholar
  26. [24]
    T. Welton, Chem. Rev. 99 (1999) 2071.Google Scholar
  27. [25]
    P. Wasserschein, T. Welton, Ionic Liquids in Syntheses, Wiley-VCH, Weinhein, 2003.Google Scholar
  28. [26]
    A. Sharifi, M.S. Abaee, M. Mirzaei, R. Salimi, J. Iran. Chem. Soc. 5 (2008) 135.CrossRefGoogle Scholar
  29. [27]
    F. Rantwijk, R.M. Lau, R.A. Lau, Trends Biotechnol. 21 (2003) 131.Google Scholar
  30. [28]
    F. Endres, S.Z.E. Abedin, Phys. Chem. Chem. Phys. 8 (2006) 2101.Google Scholar
  31. [29]
    C. Reichardt, Org. Process Res. Dev. 11 (2007) 105.Google Scholar
  32. [30]
    Y. Wang, Z.C. Shang, T.X. Wu, Synth. Commun. 36 (2006) 3053.Google Scholar
  33. [31]
    Y.L. Hu, M. Lu, X. Liu, P.C. Wang, Bull. Korean Chem. Soc. 30 (2009) 2161.Google Scholar
  34. [32]
    Z. Xi, N. Zhou, Y. Sun, K. Li, Science 292 (2001) 1139.Google Scholar
  35. [33]
    T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 46 (2007) 4222.Google Scholar
  36. [34]
    J.A. Gladysz, Chem. Rev. 102 (2002) 3215.Google Scholar
  37. [35]
    S. Sunitha, S. Kanjilal, P.S. Reddy, B.N. Rachapudi, Tetrahedron Lett. 48 (2007) 6962.Google Scholar
  38. [36]
    A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran, K.J. Weaver, D.C. Forbes, J.H.J. Davis, J. Am. Chem. Soc. 124 (2002) 5962.Google Scholar
  39. [37]
    H.Z. Zhi, C.X. Lu, Q. Zhang, J. Luo, Chem. Commun. (2009) 2878.Google Scholar
  40. [38]
    B. Tan, J.Y. Jiang, Y.H. Wang, L. Wei, D.J. Chen, Z.L. Jin, Appl. Organomet. Chem. 22 (2008) 620.Google Scholar
  41. [39]
    Y. Leng, J. Wang, D.R. Zhu, X.Q. Ren, H.Q. Ge, L. Shen, Angew. Chem. Int. Ed. 48 (2009) 168.Google Scholar
  42. [40]
    Y. Ogata, M. Okano, J. Am. Chem. Soc. 78 (1956) 5423.Google Scholar
  43. [41]
    I.N. Nazarov, A.V. Semenovsky, Russ. Chem. Bull. 6 (1957) 225.Google Scholar
  44. [42]
    G.A. Olah, S.H. Yu, J. Am. Chem. Soc. 97 (1975) 2293.Google Scholar

Copyright information

© Iranian Chemical Society 2011

Authors and Affiliations

  • Y. L. Hu
    • 1
  • X. Liu
    • 1
  • T. T. Lu
    • 1
  • M. Lu
    • 1
  • Q. Ge
    • 1
  • S. B. Zhang
    • 1
  1. 1.Chemical Engineering CollegeNanjing University of Science and TechnologyNanjingPR China

Personalised recommendations