Advertisement

Journal of the Iranian Chemical Society

, Volume 8, Issue 1, pp 68–77 | Cite as

Synthesis and characterization of an unsymmetric salicylaldimine ligand derived from 1-(2-Aminoethyl) piperazine and investigation of its analytical properties for the extraction and preconcentratoion of some divalent cations

  • A. Kilic
  • I. Tegin
  • E. Tas
  • R. Ziyadanogullan
Article
  • 103 Downloads

Abstract

The synthetic, structural, spectroscopic and analytical properties of steric hindered Schiff-base ligand [N-(3,5-di-tert-butylsalicylaldimine)-1-(2-Aminoethyl) piperazine (HL)] and its mononuclear Cu(II), Co(II) and Ni(II) complexes are described. The new unsymmetric steric hindered Schiff base ligand containing a donor set of NONO was prepared by the reaction of 1-(2-Aminoethyl) piperazine with 3,5-di-tert-butylsalicylaldehyde. Certain metal complexes of this ligand were synthesized by treating an ethanolic solution of the ligand with an equimolar amount of metal salts. The ligand and its metal complexes were characterized by FT-IR, UV-Vis, 1H NMR, elemental analysis, molar conductivity and magnetic susceptibility techniques. The reaction of this ligand in a 1:2 mole ratio with metal acetate afforded mononuclear metal complexes. The molar conductivity (ΛM) values of the metal complexes of Ni(II), Co(II) and Cu(II) were in the range of 6.4 to 9.8 Ω−1 cm2 mol−1 at room temperature. Preconcentration and separation of Cu2+ from aqueous solution using N-(3,5-di-tert-butylsalicylaldimine)-1-(2-Aminoethyl) piperazine (HL) as a new extractant were studied. The extraction experiments were carried out at various pHs. While Cu2+ showed the highest extractability and selectivity at pH 7.0, extractions of Co2+ and Ni2+ were unsuccessful due to precipitate formation.

Schiff base 1-(2-Aminoethyl) piperazine Cu(II) Preconcentration Extraction of Cu2+ Co2+ Ni2+ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.J. Cambel, S.T. Nguyen, Tetrahedron 42 (2001) 1221.Google Scholar
  2. [2]
    A.J. Stemmler, C.T. Burrows, J. Am. Chem. Soc. 121 (1999) 6956.Google Scholar
  3. [3]
    R. Klement, F. Stock, H. Elias, H. Paulus, M. Valko, M. Mazur, Polyhedron 18 (1999) 3617.Google Scholar
  4. [4]
    R. Atkins, G. Brewer, E. Kokot, G.M. Mockler, E. Sinn, Inorg. Chem. 24 (1985) 127.Google Scholar
  5. [5]
    E. Kwiatkowski, M. Kwiatkowski, A. Clechnowicz, Inorg. Chim. Acta 90 (1984) 145.Google Scholar
  6. [6]
    P.J. Burke, D.R. Mcmillin, J. Chem. Soc., Dalton Trans. 9 (1980) 1794.Google Scholar
  7. [7]
    X.D. Du, X.D. Yu, J. Mol. Catal. A: Chem. 126 (1997) 109.Google Scholar
  8. [8]
    N. Raman, A. Kulandaisamy, C. Thangaraja, K. Jeyasubramanian, Trans. Met. Chem. 28 (2003) 29.Google Scholar
  9. [9]
    D. Zurita, G.I. Luneau, S. Menage, J.L. Pierre, E.S. Aman, J. Biol. Inorg. Chem. 2 (1997) 46.Google Scholar
  10. [10]
    J.A. Halfen, V.G. Toung, W.B. Tolman, Angew. Chem. Int. Ed. Engl. 35 (1996) 1687.Google Scholar
  11. [11]
    E.I. Solomon, U.M. Sundanam, T.E. Makonkin, Chem. Rev. 96 (1996) 2563.Google Scholar
  12. [12]
    T. Inabe, I. Luneau, T. Mitani, Y. Maruyama, Bull. Chem. Soc. Jpn. 67 (1994) 612.Google Scholar
  13. [13]
    N. Hoshino, T. Inabe, T. Mitani, Y. Maruyama, Bull. Chem. Soc. Jpn. 61 (1988) 4207.Google Scholar
  14. [14]
    E. Hadjoudis, M. Vittoakis, I. Moustaki-Mavridis, Tetrahedron 43 (1987) 1345.Google Scholar
  15. [15]
    T. Sekikawa, T. Kobayahsi, T. Inabe, J. Phys. Chem. A 101 (1997) 644.Google Scholar
  16. [16]
    E. Tas, I. Ucar, V.T. Kasumov, A. Kilic, A. Bulut, Spectrochim. Acta A 68 (2007) 463.Google Scholar
  17. [17]
    J. Stary, The Solvent Extraction of Metal Chelates, Pergamon Press, Oxford, 1964.Google Scholar
  18. [18]
    Y. Marcus, A.S. Kertes, Ion Exchange and Solvent Extraction of Metal Complexes, Wiley, London, 1969.Google Scholar
  19. [19]
    T. Sekine, Y. Hasegawa, Solvent Extraction in Chemistry, Marcel Dekker, New York, 1977.Google Scholar
  20. [20]
    S. Alegret, Developments in Solvent Extraction, Wiley, New York, 1988.Google Scholar
  21. [21]
    J. Rydberg, C. Musikas, G.R. Choppin, Principles and Practices of Solvent Extraction, Marcel Dekker, New York, 1992.Google Scholar
  22. [22]
    M. Tanaka, H. Akaiwa, Solvent Extraction Chemistry, Shokabo, Tokyo, 2000.Google Scholar
  23. [23]
    M.A.H. Franson, Standard Methods for Examination of Water and Waste Water, American Publication Health Associations, 3–68, 1995.Google Scholar
  24. [24]
    Y.H. Sung, Z.S. Liu, S.D. Huang, Spectrochim. Acta Part B 52 (1997) 755.Google Scholar
  25. [25]
    J. Rydberg, C. Musikas, G.R. Choppin, Principles and Practices of Solvent Extraction, Marcel Dekker Inc., New York, 1992.Google Scholar
  26. [26]
    B. Ziyadanoğullaroi, G. Topal, S. Erdoğan, C. Hamamcoi, H. Hoşgören, Talanta 53 (2001) 1083.Google Scholar
  27. [27]
    K. Sasayama, S. Umetani, M. Matsui, Anal. Chim. Acta 149 (1983) 253.Google Scholar
  28. [28]
    W. Mickler, E. Uhlemann, Sep. Sci. And Tec. 28 (1993) 2643.Google Scholar
  29. [29]
    D. Kara, M. Alkan, I. Cakoir, Turk. J. Chem. 25 (2001) 293.Google Scholar
  30. [30]
    D. Kara, M. Alkan, S. Gucer, Anal. Lett. 35 (2002) 2577.Google Scholar
  31. [31]
    D. Kara, M. Aklan, Instr. Sci. Tech. 32 (2004) 291.Google Scholar
  32. [32]
    H. Aydin, B. Ziyadanoğullari, H. Temel, Russian J. Phys. Chem. 79 (2005) 114.Google Scholar
  33. [33]
    H. Temel, B. Ziyadanoğullaroi, H. Alp, I. Aydoin, F. Aydoin, S. Ilhan, Russian J. Coord. Chem. 32 (2006) 282.Google Scholar
  34. [34]
    B. Ziyadanoğullaroi, D. Cevizici, H. Temel, R. Ziyadanoğullaroi, J. Hazard. Mat. 150 (2008) 285.Google Scholar
  35. [35]
    H. Temel, H. Alp, S. Ilhan, B. Ziyadanogullaroi, I. Yoilmaz, Monatsh. Chem. 138 (2007) 1199.Google Scholar
  36. [36]
    J.F. Larrow, E.N. Jacobsen, Y. Gao, Y. Hong, X. Nie, C.M. Zepp, J. Org. Chem. 59 (1994) 1939.Google Scholar
  37. [37]
    A. Earnshaw, Introduction to Magnetochemistry, Academic Press, London, 1968, p. 4.Google Scholar
  38. [38]
    A. Kilic, E. Tas, B. Deveci, I. Yilmaz, Polyhedron 26 (2007) 4009.Google Scholar
  39. [39]
    K.N. Kumar, R. Ramesh, Polyhedron 24 (2005) 1885.Google Scholar
  40. [40]
    H. Temel, S. Ilhan, M. Aslanoglu, A. Kilic, E. Tas, J. Chin. Chem. Soc. 53 (2006) 1027.Google Scholar
  41. [41]
    S.A. Ali, A.A. Soliman, M.M. Aboaly, R.M. Ramadan, J. Coord. Chem. 55 (2002) 1161.Google Scholar
  42. [42]
    L. Sacconi, Coord. Chem. Rev. 1 (1966) 126.Google Scholar
  43. [43]
    Z. Chen, Y. Wu, D. Gu, F. Gan, Dyes and Pigments 76 (2008) 624.Google Scholar
  44. [44]
    R.L. Carlin (Ed.), Transition Metal Chemistry, Vol. 1, Marcel Dekker, Inc., New York, 1965, p. 239.Google Scholar
  45. [45]
    S. Ilhan, H. Temel, A. Kilic, J. Coord. Chem. 61 (2008) 277.Google Scholar
  46. [46]
    C. Fraser, B. Bosnich, Inorg. Chem. 33 (1994) 338.Google Scholar
  47. [47]
    R.L. Dutta, Inorganic Chemistry, Part II, 2nd ed., The New Book Stall, Calcutta, 1981, p.386.Google Scholar
  48. [48]
    C. Pazos, J.P.S. Curieses, J. Coca, Solvent Extraction and Ion Exchange 9 (1991) 569.Google Scholar

Copyright information

© Iranian Chemical Society 2011

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Arts and SciencesHarran UniversitySanliurfaTurkey
  2. 2.Department of Chemistry, Faculty of Arts and SciencesSiirt UniversitySiirtTurkey

Personalised recommendations