Advertisement

Journal of the Iranian Chemical Society

, Volume 7, Supplement 2, pp S123–S129 | Cite as

Magnetism study of CI xCoy[Fe(CN)6]·zH2O (CI=Rb,Cs) Prussian blue nanoparticles

  • J. F. Xu
  • H. Liu
  • P. Liu
  • C. H. Liang
  • Q. Wang
  • J. Fang
  • J. H. Zhao
  • W. G. Shen
Article

Abstract

We synthesized a series of cobalt-iron Prussian blue analogues in the form of nanocubes with which we tuned the amount of Cesium cation in the tetrahedral sites of the structure and varied nature of the alkali cation in the compound adopting a single microemulsion technique. Structure and morphology of the compound had been investigated by combining energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma (ICP), thermo-gravimetry analysis (TGA), infrared spectroscopy (IR), powder X-ray diffraction (XRD) and Transmission electron microscopy experiments (TEM). To directly determine the coercivity, remanence and Curie temperature, superconducting quantum interference device magnetometer (SQUID) was performed. Our investigation suggests that the amount and nature of the alkali cation are critical parameters for understanding the magnetic properties of the nanoparticles.

Keywords

Prussian blue analogues Single microemulsion Magnetic properties Nanoparticles 

References

  1. [1]
    M.H. Pournaghi-Azar, H. Dastangoo, Electrochim. Acta 48 (2003) 1797.Google Scholar
  2. [2]
    D. Zhang, K. Wang, D.C. Sun, X.H. Xia, H.Y. Chen, Chem. Mater. 15 (2003) 4163.Google Scholar
  3. [3]
    A. Eftekhari, J. Electroanal. Chem. 537 (2002) 59.Google Scholar
  4. [4]
    K. Itaya, T. Ataka, S. Toshima, J. Am. Chem. Soc. 104 (1982) 4767.Google Scholar
  5. [5]
    W.Q. Jin, A. Toutianoush, M. Pyrasch, J. Schnepf, H. Gottschalk, W. Rammensee, B. Tieke, J. Phys. Chem. B 107 (2003) 12062.Google Scholar
  6. [6]
    M. Pyrasch, A. Toutianoush, W. Jin, J. Schnepf, B. Tieke, Chem. Mater. 15 (2003) 245.Google Scholar
  7. [7]
    O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science 272 (1996) 704.Google Scholar
  8. [8]
    O. Sato, Y. Einaga, T. Iyoda, A. Fujishima, K. Hashimoto, J. Phys. Chem. B 101 (1997) 3903.Google Scholar
  9. [9]
    O. Sato, Y. Einaga, A. Fujishima, K. Hashimoto, Inorg. Chem. 38 (1999) 4405.Google Scholar
  10. [10]
    N. Shimamoto, S.I. Ohkoshi, O. Sato, K. Hashimoto, Inorg. Chem. 41 (2002) 678.Google Scholar
  11. [11]
    A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C.C.d. Moulin, M. Verdaguer, J. Am. Chem. Soc. 122 (2000) 6648.Google Scholar
  12. [12]
    V. Escax, A. Bleuzen, C.C.D. Moulin, F. Villain, A. Goujon, F. Varret, M. Verdaguer, J. Am. Chem. Soc. 123 (2001) 12536.Google Scholar
  13. [13]
    J.H. Park, Y.D. Huh, E. Čižmár, S.G. Gamble, D.R. Talham, M.W. Meisel, J. Magn. Magn. Mater. 272–276 (2004) 1116.Google Scholar
  14. [14]
    J.H. Park, E. Čižmár, M.W. Meisel, Y.D. Huh, F. Frye, S. Lane, D.R. Talham, Appl. Phys. Lett. 85 (2004) 3797.Google Scholar
  15. [15]
    F.A. Frye, D.M. Pajerowski, S.M. Lane, N.E. Anderson, J.H. Park, M.W. Meisel, D.R. Talham, Polyhedron 26 (2007) 2281.Google Scholar
  16. [16]
    B. Hemmateenejad, R. Miri, R. Kamali, J. Iran. Chem. Soc. 6 (2009) 113.CrossRefGoogle Scholar
  17. [17]
    M. Verdaguer, Science 272 (1996) 698.Google Scholar
  18. [18]
    A. Bleuzen, C. Lomenech, A. Dolbecq, F. Villain, A. Goujon, O. Roubeau, Mol. Cryst. Liq. Cryst. 335 (1999) 253.Google Scholar
  19. [19]
    H. Liu, X.L. Du, P.Y. Gao, J.H. Zhao, J. Fang, W.G. Shen, J. Magn. Magn. Mater. 322 (2010) 572.Google Scholar
  20. [20]
    A. Bhattacharjee, S. Saha, S. Koner, V. Ksenofontov, S. Reimana, P. Gütlich, J. Magn. Magn. Mater. 302 (2006) 173.Google Scholar
  21. [21]
    M. Yamada, T. Sato, M. Miyake, Y. Kobayashi, J. Colloid Interface Sci. 315 (2007) 369.Google Scholar
  22. [22]
    S. Vaucher, M. Li, S. Mann, Angew. Chem. Int. Ed. 39 (2000) 1793.Google Scholar
  23. [23]
    H.L. Sun, H.T. Shi, F. Zhao, L.M. Qi, S. Gao, Chem. Commun. 34 (2005) 4339.Google Scholar
  24. [24]
    S. Choudhury, G.K. Dey, J.V. Yakhmi, J. Cryst. Growth 258 (2003) 197.Google Scholar
  25. [25]
    X.B. Li, Y.G. Zhang, T.W. Li, Z.D. Zhang, Chem. Lett. 35 (2006) 506.Google Scholar
  26. [26]
    L.H. Shi, T. Wu, M.J. Wang, D. Li, Y.J. Zhang, J.H. Li, Acta Chim. Sin. 23 (2005) 149.Google Scholar
  27. [27]
    A.A. Sattar, H.M. El-sayed, K.M. El-shokrofy, M.M. El-tabey, J. Applied Sci. 5 (2005) 162.Google Scholar
  28. [28]
    W.C. Feng, R.W. Gao, G.B. Han, J. Rare Earth 23 (2005) 52.Google Scholar
  29. [29]
    H.P. Liang, Y.G. Guo, J.S. Hu, C.F. Zhu, L.J. Wan, C.L. Bai, Inorg. Chem. 44 (2005) 3013.Google Scholar
  30. [30]
    J. Xiang, X.Q. Shen, Y.W. Zhu, J. Funct. Mater. 40 (2009) 365.Google Scholar

Copyright information

© Iranian Chemical Society 2010

Authors and Affiliations

  • J. F. Xu
    • 1
  • H. Liu
    • 1
  • P. Liu
    • 1
  • C. H. Liang
    • 1
  • Q. Wang
    • 1
  • J. Fang
    • 1
  • J. H. Zhao
    • 1
  • W. G. Shen
    • 1
    • 2
  1. 1.Department of ChemistryLanzhou UniversityLanzhouChina
  2. 2.Department of ChemistryEast China University of Science and TechnologyShanghaiChina

Personalised recommendations