Skip to main content
Log in

A theoretical study on the effect of intercalating sulfur atom and doping boron atom on the adsorption of hydrogen molecule on (10,0) single-walled carbon nanotubes

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Adsorption of molecular hydrogen on single-walled carbon nanotube (SWCNT), sulfur-intercalated SWCNT (S-SWCNT), and boron-doped SWCNT (BSWCNT), have been studied by means of density functional theory (DFT). Two methods KMLYP and local density approximation (LDA) were used to calculate the binding energies. The most stable configuration of H2 on the surface of pristine SWCNT was found to be on the top of a hexagonal at a distance of 3.54 Å in good agreement with the value of 3.44 Å reported by Han and Lee (Carbon, 2004, 42, 2169). KMLYP binding energies for the most stable configurations in cases of pristine SWCNT, S-SWCNT, and BSWCNT were found to be −2.2 kJ mol−1, −3.5 kJ mol−1, and −3.5 kJ mol−1, respectively, while LDA binding energies were found to be −8.8 kJ mol−1, −9.7 kJ mol−1, and −4.1 kJ mol−1, respectively. Increasing the polarizability of hydrogen molecule due to the presence of sulfur in sulfur intercalated SWCNT caused changes in the character of its bonding to sulfur atom and affected the binding energy. In H2-BSWCNT system, stronger charge transfer caused stronger interaction between H2 and BSWCNT to result a higher binding energy relative to the binding energy for H2-SWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Simonyan, P. Diep, J.K. Johnson, J. Chem. Phys. 1999, 111, 9778.

    CAS  Google Scholar 

  2. G.E. Froudakis, Rev. Adv. Mater. Sci. 2003, 5, 259.

    CAS  Google Scholar 

  3. V.V. Simonyan, J.K. Johnson, J. Alloys & Comp. 2002, 330, 659.

    Google Scholar 

  4. X. Chen, Y. Zhang, X.P. Gao, G.L. Pan, X.Y. Jiang, J.Q. Qu, F. Wu, J. Yan and D.Y. Song, Int. J. Hydrogen Energy, 2004, 29, 743 and references cited there.

    CAS  Google Scholar 

  5. E.L. Pace and A.R. Siebert J. Phys. Chem. 1995, 63, 1398.

    Google Scholar 

  6. G. Mpourmpakis, E. Tylianakis, D. Papanikolaou, and G. Froudakis, Rev. Adv. Mater. Sci. 2006, 11, 92.

    CAS  Google Scholar 

  7. S. Iijima, Nature. 1991, 354, 56.

    CAS  Google Scholar 

  8. L. Firlej, B. Kuchta, C. Wexler and P. Pfeifer, Adsorption, 2009, 15, 312.

    CAS  Google Scholar 

  9. S.H. Jhi and Y.K. Kwon, Phys. Rev. B 2004, 69, 245407.

    Google Scholar 

  10. V. Gayathri and R. Geetha, Adsorption, 2007, 13, 53.

    CAS  Google Scholar 

  11. R.T. Yang, Carbon, 2000, 38, 623. M.C. Nutzenadel, A. Nuttel, D. Chartuni and L. Schlapbach, Electrochem. Solid-State Lett. 1999, 2, 30.

    CAS  Google Scholar 

  12. X. Qin, X.P. Gao, H. Liu, H.T. Yuan, D.Y. Yan, W.L. Gong and D.Y. Song, Electrochem. Solid-State Lett. 2000, 3, 532.

    CAS  Google Scholar 

  13. K.F. Kelly, I.W. Chiang, E.T. Mickelson, R.H. Hauge, J.L. Margrave, X. Wang, G.E. Scuseria, C. Radloff and N.J. Halas, Chem. Phys. Lett. 1999, 313, 445.

    CAS  Google Scholar 

  14. A. Cao, H. Zhu, X. Zhang, X. Li, D. Ruan, C. Xu, B. Wei, J. Liang and D. Wu, Chem. Phys. Lett. 2001, 342, 510.

    CAS  Google Scholar 

  15. M. Volpe and F. Cleri, Chem. Phys. Lett. 2003, 371, 476.

    CAS  Google Scholar 

  16. R. Yang, Carbon, 2000, 38, 623.

    CAS  Google Scholar 

  17. A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, R.E. Smalley, Nature, 1997, 388, 257.

    CAS  Google Scholar 

  18. R.S. Lee, H.J. Kim, J.E. Fischer, A. Thess, R.E. Smalley, Nature, 1997, 388, 255.

    CAS  Google Scholar 

  19. L. Grigorian, K.A. Williams, S. Fang, G.U. Sumanasekera, A.L. Loper, E.C. Dickey, S.J. Pennycook, P.C. Eklund, Phys. Rev. Lett. 1998, 80, 5560.

    CAS  Google Scholar 

  20. L. Grigorian, G.U. Sumanasekera, A.L. Loper, S. Fang, J.L. Allen, P. Eklund, Phys. Rev. B 1998, 58, R4195.

    CAS  Google Scholar 

  21. X. Fan, E.C. Dickey, P.C. Eklund, K.A. Williams, L. Grigorian, R. Buczko, S.T. Pantelides, S.J. Pennycook, Phys. Rev. Lett. 2000, 84, 4621.

    CAS  Google Scholar 

  22. I. Cabria, M.J. Lopez, J.A. Alonso, Eur. Phys. J. D 2005, 34, 279

    CAS  Google Scholar 

  23. E. Rangel, G. Ruiz-Chavarria, L.F. Magana, J.S. Arellano, Phys. Lett. A. 2009, 373, 2588.

    CAS  Google Scholar 

  24. E. Durgun, Y.R. Jang and S. Ciraci, Phys. Rev. B 2007, 76, 073413.

    Google Scholar 

  25. P. Chen, X. Wu, J. Lin and K.L. Tan, Science, 1999, 285, 91.

    CAS  Google Scholar 

  26. K.F. Kelly, I.W. Chiang, E.T. Mickelson, R.H. Hauge, J.L. Margrave, X. Wang, G.E. Scuseria, C. Radloff and N.J. Halas, Chem. Phys. Lett. 1999, 313, 445.

    CAS  Google Scholar 

  27. A. Cao, H. Zhu, X. Zhang, X. Li, D. Ruan, C. Xu, B. Wei, J. Liang and D. Wu, Chem. Phys. Lett. 2001, 342, 510.

    CAS  Google Scholar 

  28. R.G. Ding, G.Q. Lu, Z.F. Yan and M.A. Wilson, J. Nanosci. Nanotech. 2001, 1, 7.

    CAS  Google Scholar 

  29. S.H. Jhi and Y.K. Kwon, Phys. Rev. B. 2004, 69, 245407.

    Google Scholar 

  30. R. Wang, D. Zhang, Y. Zhang and Ch. Liu, J. Phys. Chem. B. 2006, 110, 18267.

    CAS  Google Scholar 

  31. Z. Zhou, X. Gao, J. Yan, D. Song, Carbon, 2006, 44, 939.

    CAS  Google Scholar 

  32. M. Sankaran and B. Viswanathan, Carbon, 2006, 44, 2816.

    CAS  Google Scholar 

  33. Y. Zhao; Y.H. Kim; A.C. Dillon; M.J. Heben and S.B. Zhang, Phys. Rev. Lett. 2005, 94, 155504.

    Google Scholar 

  34. G. Guo, F. Wang, H. Sun, D. Zhang, Int. J. Quantum Chem. 2008, 108, 203.

    CAS  Google Scholar 

  35. M.J. Frisch et al. Gaussian 03, Revision B.01,Gaussian, Inc., Pittsburgh PA, 2003

    Google Scholar 

  36. M.J.S. Dewar and C.H. Reynolds, J. Comp. Chem. 1988, 2, 140.

    Google Scholar 

  37. J.K. Kang and C.B. Musgrave, J. Phys. Chem. 2001, 115, 11040.

    CAS  Google Scholar 

  38. P. Hohenberg and W. Kohn, Phys. Rev. B. 1964, 136, 864.

    Google Scholar 

  39. C. Lee, W. Yang and R.G. Parr. Phys. Rev. B 1988, 37, 785.

    CAS  Google Scholar 

  40. S.H. Vosko, L. Wilk, M. Nusair, Canadian J. Phys. 1980, 58, 1200.

    CAS  Google Scholar 

  41. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 1980, 45, 566.

    CAS  Google Scholar 

  42. C.D. Sherrill, M.S. Lee, and M. Head-Gordon, Chem. Phys. Lett. 302, 425, 1999.

    CAS  Google Scholar 

  43. S.S. Han and H.M. Lee, Carbon, 2004, 42, 2169.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Mousavipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousavipour, S.H., Chitsazi, R. A theoretical study on the effect of intercalating sulfur atom and doping boron atom on the adsorption of hydrogen molecule on (10,0) single-walled carbon nanotubes. JICS 7 (Suppl 2), S92–S102 (2010). https://doi.org/10.1007/BF03246188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03246188

Keywords

Navigation