Advertisement

A theoretical study on the effect of intercalating sulfur atom and doping boron atom on the adsorption of hydrogen molecule on (10,0) single-walled carbon nanotubes

  • S. H. Mousavipour
  • R. Chitsazi
Article

Abstract

Adsorption of molecular hydrogen on single-walled carbon nanotube (SWCNT), sulfur-intercalated SWCNT (S-SWCNT), and boron-doped SWCNT (BSWCNT), have been studied by means of density functional theory (DFT). Two methods KMLYP and local density approximation (LDA) were used to calculate the binding energies. The most stable configuration of H2 on the surface of pristine SWCNT was found to be on the top of a hexagonal at a distance of 3.54 Å in good agreement with the value of 3.44 Å reported by Han and Lee (Carbon, 2004, 42, 2169). KMLYP binding energies for the most stable configurations in cases of pristine SWCNT, S-SWCNT, and BSWCNT were found to be −2.2 kJ mol−1, −3.5 kJ mol−1, and −3.5 kJ mol−1, respectively, while LDA binding energies were found to be −8.8 kJ mol−1, −9.7 kJ mol−1, and −4.1 kJ mol−1, respectively. Increasing the polarizability of hydrogen molecule due to the presence of sulfur in sulfur intercalated SWCNT caused changes in the character of its bonding to sulfur atom and affected the binding energy. In H2-BSWCNT system, stronger charge transfer caused stronger interaction between H2 and BSWCNT to result a higher binding energy relative to the binding energy for H2-SWCNT.

Keywords

Hydrogen adsorption Binding energy SWCNT Boron-doped SWCNT Sulfur-intercalated SWCNT 

References

  1. [1](a)
    V.V. Simonyan, P. Diep, J.K. Johnson, J. Chem. Phys. 1999, 111, 9778.Google Scholar
  2. (b).
    G.E. Froudakis, Rev. Adv. Mater. Sci. 2003, 5, 259.Google Scholar
  3. (c).
    V.V. Simonyan, J.K. Johnson, J. Alloys & Comp. 2002, 330, 659.Google Scholar
  4. (d).
    X. Chen, Y. Zhang, X.P. Gao, G.L. Pan, X.Y. Jiang, J.Q. Qu, F. Wu, J. Yan and D.Y. Song, Int. J. Hydrogen Energy, 2004, 29, 743 and references cited there.Google Scholar
  5. (e).
    E.L. Pace and A.R. Siebert J. Phys. Chem. 1995, 63, 1398.Google Scholar
  6. [2]
    G. Mpourmpakis, E. Tylianakis, D. Papanikolaou, and G. Froudakis, Rev. Adv. Mater. Sci. 2006, 11, 92.Google Scholar
  7. [3]
    S. Iijima, Nature. 1991, 354, 56.Google Scholar
  8. [4](a)
    L. Firlej, B. Kuchta, C. Wexler and P. Pfeifer, Adsorption, 2009, 15, 312.Google Scholar
  9. (b).
    S.H. Jhi and Y.K. Kwon, Phys. Rev. B 2004, 69, 245407.Google Scholar
  10. (c).
    V. Gayathri and R. Geetha, Adsorption, 2007, 13, 53.Google Scholar
  11. [5](a)
    R.T. Yang, Carbon, 2000, 38, 623. M.C. Nutzenadel, A. Nuttel, D. Chartuni and L. Schlapbach, Electrochem. Solid-State Lett. 1999, 2, 30.Google Scholar
  12. (b).
    X. Qin, X.P. Gao, H. Liu, H.T. Yuan, D.Y. Yan, W.L. Gong and D.Y. Song, Electrochem. Solid-State Lett. 2000, 3, 532.Google Scholar
  13. (c).
    K.F. Kelly, I.W. Chiang, E.T. Mickelson, R.H. Hauge, J.L. Margrave, X. Wang, G.E. Scuseria, C. Radloff and N.J. Halas, Chem. Phys. Lett. 1999, 313, 445.Google Scholar
  14. (d).
    A. Cao, H. Zhu, X. Zhang, X. Li, D. Ruan, C. Xu, B. Wei, J. Liang and D. Wu, Chem. Phys. Lett. 2001, 342, 510.Google Scholar
  15. [6]
    M. Volpe and F. Cleri, Chem. Phys. Lett. 2003, 371, 476.Google Scholar
  16. [7]a
    R. Yang, Carbon, 2000, 38, 623.Google Scholar
  17. b.
    A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, R.E. Smalley, Nature, 1997, 388, 257.Google Scholar
  18. c.
    R.S. Lee, H.J. Kim, J.E. Fischer, A. Thess, R.E. Smalley, Nature, 1997, 388, 255.Google Scholar
  19. d.
    L. Grigorian, K.A. Williams, S. Fang, G.U. Sumanasekera, A.L. Loper, E.C. Dickey, S.J. Pennycook, P.C. Eklund, Phys. Rev. Lett. 1998, 80, 5560.Google Scholar
  20. e.
    L. Grigorian, G.U. Sumanasekera, A.L. Loper, S. Fang, J.L. Allen, P. Eklund, Phys. Rev. B 1998, 58, R4195.Google Scholar
  21. f.
    X. Fan, E.C. Dickey, P.C. Eklund, K.A. Williams, L. Grigorian, R. Buczko, S.T. Pantelides, S.J. Pennycook, Phys. Rev. Lett. 2000, 84, 4621.Google Scholar
  22. [8]
    I. Cabria, M.J. Lopez, J.A. Alonso, Eur. Phys. J. D 2005, 34, 279Google Scholar
  23. [9]
    E. Rangel, G. Ruiz-Chavarria, L.F. Magana, J.S. Arellano, Phys. Lett. A. 2009, 373, 2588.Google Scholar
  24. [10]
    E. Durgun, Y.R. Jang and S. Ciraci, Phys. Rev. B 2007, 76, 073413.Google Scholar
  25. [11]
    P. Chen, X. Wu, J. Lin and K.L. Tan, Science, 1999, 285, 91.Google Scholar
  26. [12]a
    K.F. Kelly, I.W. Chiang, E.T. Mickelson, R.H. Hauge, J.L. Margrave, X. Wang, G.E. Scuseria, C. Radloff and N.J. Halas, Chem. Phys. Lett. 1999, 313, 445.Google Scholar
  27. [12]b
    A. Cao, H. Zhu, X. Zhang, X. Li, D. Ruan, C. Xu, B. Wei, J. Liang and D. Wu, Chem. Phys. Lett. 2001, 342, 510.Google Scholar
  28. [13]a
    R.G. Ding, G.Q. Lu, Z.F. Yan and M.A. Wilson, J. Nanosci. Nanotech. 2001, 1, 7.Google Scholar
  29. [13]b
    S.H. Jhi and Y.K. Kwon, Phys. Rev. B. 2004, 69, 245407.Google Scholar
  30. [14]
    R. Wang, D. Zhang, Y. Zhang and Ch. Liu, J. Phys. Chem. B. 2006, 110, 18267.Google Scholar
  31. [15]
    Z. Zhou, X. Gao, J. Yan, D. Song, Carbon, 2006, 44, 939.Google Scholar
  32. [16]
    M. Sankaran and B. Viswanathan, Carbon, 2006, 44, 2816.Google Scholar
  33. [17]
    Y. Zhao; Y.H. Kim; A.C. Dillon; M.J. Heben and S.B. Zhang, Phys. Rev. Lett. 2005, 94, 155504.Google Scholar
  34. [18]
    G. Guo, F. Wang, H. Sun, D. Zhang, Int. J. Quantum Chem. 2008, 108, 203.Google Scholar
  35. [19]
    M.J. Frisch et al. Gaussian 03, Revision B.01,Gaussian, Inc., Pittsburgh PA, 2003Google Scholar
  36. [20]
    M.J.S. Dewar and C.H. Reynolds, J. Comp. Chem. 1988, 2, 140.Google Scholar
  37. [21]
    J.K. Kang and C.B. Musgrave, J. Phys. Chem. 2001, 115, 11040.Google Scholar
  38. [22]
    P. Hohenberg and W. Kohn, Phys. Rev. B. 1964, 136, 864.Google Scholar
  39. [23]
    C. Lee, W. Yang and R.G. Parr. Phys. Rev. B 1988, 37, 785.Google Scholar
  40. [24]
    S.H. Vosko, L. Wilk, M. Nusair, Canadian J. Phys. 1980, 58, 1200.Google Scholar
  41. [25]
    D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 1980, 45, 566.Google Scholar
  42. [26]
    C.D. Sherrill, M.S. Lee, and M. Head-Gordon, Chem. Phys. Lett. 302, 425, 1999.Google Scholar
  43. [27]
    S.S. Han and H.M. Lee, Carbon, 2004, 42, 2169.Google Scholar

Copyright information

© Iranian Chemical Society 2010

Authors and Affiliations

  1. 1.Department of Chemistry, College of SciencesShiraz UniversityShirazIran

Personalised recommendations