Advertisement

Journal of the Iranian Chemical Society

, Volume 5, Issue 4, pp 535–545 | Cite as

Conclusive evidence for delayed autocatalytic behavior of Mn(II) ions at a critical concentration

  • H. Bahrami
  • M. Zahedia
Article

Abstract

The kinetics of the permanganic oxidation process of glycine, L-alanine and L-leucine in strong acid media were investigated using a spectrophotometric technique. Conclusive evidence has proven that the autocatalytic activity of Mn(II) in these reactions in strong acidic media is analogous to that of weak acid media, but in the former, Mn(II) ions should acquire a critical concentration for them to show autocatalytic characteristics. This critical concentration depends on the nature of the amino acid used. Considering the delayed autocatalytic behavior of Mn(II) ions, we herein present the rate equations and mechanisms satisfying observations for both catalytic and noncatalytic routes. The correspondence of the pseudo-order rate constants of the catalytic and noncatalytic pathways to Eyring law verify both the critical concentration as well as the delayed autocatalytic behavior concepts. In general, the onset of delayed behavior can be attributed to the concentration ratio of Mn(II) to amino acid which can be of a certain value for any particular amino acid.

Keywords

Glycine L-alanine and L-leucine Permanganate oxidation Concentrated acidic medium Delayed autocatalysis Free radical intermediate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. S. Verma, M. J. Reddy, V. R. Shastry, J. Chem. Soc. Perkin Trans 2 (1976) 469.Google Scholar
  2. [2]
    A. A. Frost, R.G. Pearson, Kinetic and Mechanisms, Wiley, New York, 1961, p. 152.Google Scholar
  3. [3]
    C. S. Ameta, P. N. Pande, H. L. Gupta, H. C. Chowhhry, Acta Phys. Chem. 26 (1980) 89.Google Scholar
  4. [4]
    C. S. Ameta, P. N. Pande, H. L. Gupta, H. C. Chowhhry, Z. Phys. Chem. (Leipzig), 261 (1980) 1222.Google Scholar
  5. [5]
    C. S. Ameta, P. N. Pande, H. L. Gupta, H. C. Chowhhry, Z. Phys. Chem. (Leipzig), 261 (1980) 802.Google Scholar
  6. [6]
    C. S. Ameta, P. N. Pande, H. L. Gupta, H. C. Chowhhry, Acta Chim. Acad. Sci. Hung. 110 (1982) 7.Google Scholar
  7. [7]
    L. M. Bharadwaj, P. C. Nigam, Ind. J. Chem. 8A (1981) 793.Google Scholar
  8. [8]
    V. S. Rao, B. Sethuram, T.N. Rao, Int. J. Chem. Kinet. 11 (1979) 165.Google Scholar
  9. [9]
    V. S. Rao, B. Sethuram, T.N. Rao, Oxid. Commun. 9 (1986) 11.Google Scholar
  10. [10]
    U. D. Mudaliar, V.R. Chourey, R.S. Verma, V.R. Shastry, Ind. J. Chem. Soc. 60 (1983) 561.Google Scholar
  11. [11]
    H. M. Girgis, R.M. Hassan, A.S. El-Shahawy, Bull. Fac. Sci. Univ. 16 (1987) 41.Google Scholar
  12. [12]
    R. M. Hassan, M.A. Mousa, M.H. Wahdan, J. Chem. Soc. Dalton. Trans 3 (1988) 605.Google Scholar
  13. [13]
    H. Iloukani, H. Bahrami, Int. J. Chem. Kinet. 31 (1999) 95.Google Scholar
  14. [14]
    B. R. Sahu, V.R. Chourey, S. Pandey, L.V. Shastry, V. R. Shastry, Ind. J. Chem. Soc. 76 (2000) 131.Google Scholar
  15. [15]
    H. Iloukhani, N. Rashidi, M. Moghadasi, Asian J. Chem. 12 (2000) 1209.Google Scholar
  16. [16]
    H. Iloukhani, S.R. Ekvan, A. A. Rafati, Phys. Chem. Liquids 41 (2003) 25.Google Scholar
  17. [17]
    M. Moghadasi, N. Rashidi, H. Iloukhani, Phys. Chem. Liquids 2001 (39) 267.Google Scholar
  18. [18]
    H. Iloukhani, M. Moazenzadeh, Phys. Chem. Liquids 39 (2001) 429.Google Scholar
  19. [19]
    M. Zahedi, H. Bahrami, Kinet. Catal. 45 (2004) 351.Google Scholar
  20. [20]
    H. Bahrami, M. Zahedi, Can. J. Chem. 82 (2004) 430.Google Scholar
  21. [21]
    H. Bahrami, M. Zahedi, Int. J. Chem. Kinet. 38 (2006) 1.Google Scholar
  22. [22]
    A. I. Vogel, Quimica Analitica Cuantitative, Vol. 1, Kapelusz, Buenos Aires, 1960, p. 382.Google Scholar
  23. [23]
    F. Felig, Spot Tests in Inorganic Analysis, Elsevier, Amsterdam, 1972, p. 334Google Scholar
  24. [24]
    A. I. Vogel, Quimica Analitica Cuantitative, Vol. 1, Kapelusz, Buenos Aires, 1953, p. 250.Google Scholar
  25. [25]
    R. M. Roberts, J. C. Gilbert, L. B. Rodwald, A. S. Wingrove, Modern Experimental Organic Chemistry, 2nd ed., Saunders, Philadelphia, 1985, p. 700.Google Scholar
  26. [26]
    K. K. Banerji, P. Nath, Bull. Chem. Soc. Jap. 42 (1969) 2038.Google Scholar
  27. [27]
    F. J. Andrés Ordax, A. Arrizabalaga, J.I. Martinez de Ilarduya, An. Quim. 80 (1984) 531.Google Scholar
  28. [28]
    F. J. Andrés Ordax, A. Arrizabalaga, R. Martinez Perez de mendiola, Studia. Chemica. 11 (1986) 303.Google Scholar
  29. [29]
    F. J. Andrés Ordax, A. Arrizabalaga, K. Ortega, An. Quim. 85 (1989) 218.Google Scholar
  30. [30]
    J. F. Perez Benito, F. Mata Perez, E. Brillas, Can. J. Chem. 65 (1987) 2329.Google Scholar
  31. [31]
    E. Brillas, J. A. Garrido, J. F. Perez Benito, Collect. Czech. Chem. Comun. 53 (1988) 479.Google Scholar
  32. [32]
    J. A. Garrido, J. F. Perez Benito, R. M. Rodrigouez, J. De Andrés, E. Brillas, J. Chem. Res. 11 (1987) 380.Google Scholar
  33. [33]
    J. De Andrés, E. Brillas, J. A. Garrido, J. F. Perez Benito, J. Chem. Soc. Perkin Trans 2 (1988) 107.Google Scholar
  34. [34]
    R. M. Rodrigouez, J. De Andrés, E. Brillas, J. A. Garrido, J. F. Perez Benito, New J. Chem. 2 (1988) 143.Google Scholar
  35. [35]
    J. De Andrés, E. Brillas, J. A. Garrido, J. F. Perez Benito, Gazz. Chim. Ital. 118 (1988) 203.Google Scholar
  36. [36]
    K. A. Kovacs, P. Grof, L. Burai, M. Riedel, J. Phys. Chem. A 108 (2004) 11026.Google Scholar
  37. [37]
    W. A. Waters, Q. Rev. Chem. Soc. 12 (1958) 277.Google Scholar
  38. [38]
    N. Ganapathisubramanian, J. Phys. Chem. 92 (1988) 414.Google Scholar
  39. [39]
    R. T. Powell, T. Oskin, N. Ganapathisubramanian, J. Phys. Chem. 93 (1989) 2718.Google Scholar
  40. [40]
    A. Arrizabalaga, F. J. Andrés Ordax, M. Y. Fernández Aránguiz, R. Peche, Int. J. Chem. Kinet. 29 (1997) 181.Google Scholar
  41. [41]
    F. J. Andrés Ordax, A. Arrizabalaga, J. Casado, R. Peche, React. Kinet. Catal. Lett. 44 (1991) 293.Google Scholar
  42. [42]
    F. J. Andrés Ordax, A. Arrizabalaga, R. Peche, M.A. Quintana, An. Quim. 87 (1992) 828.Google Scholar
  43. [43]
    F. J. Andrés Ordax, A. Arrizabalaga, R. Peche, M.A. Quintana, An. Quim. 88 (1992) 440.Google Scholar
  44. [44]
    M. J. Insausti, F. Mata-Pèrez, M.P. Alvarez-Macho, Int. J. Chem. Kinet. 27 (1995) 507.Google Scholar
  45. [45]
    A. Arrizabalaga, F. J. Andrés Ordax, M.Y. Fernández Aránguiz, R. Peche. Int. J. Chem. Kinet. 28 (1996) 799.Google Scholar
  46. [46]
    W. A. Waters, Q. Rev. Chem. Soc. 12 (1958) 277.Google Scholar
  47. [47]
    P. S. Radhakrishnanurti, M. D. Rao, Indian J. Chem. Soc. A 15 (1977) 524.Google Scholar
  48. [48]
    Y. Takezaki, C. Takeuchi, J. Chem. Phys. 22 (1954) 1527.Google Scholar
  49. [49]
    J.W. Moore, R. G. Pearson, Kinetic and Mechanisms, Wiley, New York, 1981, p. 42.Google Scholar

Copyright information

© Iranian Chemical Society 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesShahid Beheshti UniversityTehranIran
  2. 2.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran

Personalised recommendations