Journal of the Iranian Chemical Society

, Volume 7, Issue 3, pp 554–563 | Cite as

Theoretical study of Diels-Alder reaction: Role of substituent in regioselectivity and aromaticity

  • A. Mohajeri
  • M. Shahamirian


A comparative study on the influence of the substituents on the Diels-Alder reaction was performed. The energy profiles for 11 sets of Diels-Alder reaction between monosubstituted derivatives of butadiene and ethylene have been studied and the structures of all transition states were located at B3LYP/6-31+G* level. Four pathways were independently investigated; the reaction between substituted ethylene and 1-substituted butadiene leading to ortho (a 1) and meta (a 2) adducts, and in the same manner, the reaction between substituted ethylene and 2-substituted butadiene yields para (b 1) and meta (b 2) adducts. Inspection of both the activation barriers and the reaction energies for 44 reactions revealed that the pathway b 1 is both thermodynamically and kinetically more favorable in all types of Diels-Alder reactions; while the pathway a 1 can be labeled only as kinetic pathway. The aromaticity of all 44 transition state structures was measured using para delocalization index to study the effect of aromaticity on the reaction path. The calculations suggest that in normal and neutral DA reactions there is a gain in aromatic stabilization of the transition state which reduces slightly the activation barrier of the kinetic pathway a 1.


Diels-Alder reaction Regioselectivity Aromaticity para delocalization index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.J. Cramer, S.E. Barrows, J. Phys. Org. Chem. 13 (2000) 176.Google Scholar
  2. [2]
    S. Sakai, J. Phys. Chem. A 104 (2000) 922.Google Scholar
  3. [3]
    E. Goldstein, B. Beno, K.N. Houk, J. Am. Chem. Soc. 118 (1996) 6036.Google Scholar
  4. [4]
    A.Z. Bradley, M.G. Kociolek, R.P. Johnson, J. Org. Chem. 65 (2000) 7134.Google Scholar
  5. [5]
    R.E. Townshend, G. Ramunni, G. Segal, W.J. Hehre, L. Salem, J. Am. Chem. Soc. 98 (1976) 2190.Google Scholar
  6. [6]
    M.J.S. Dewar, A.B. Pierini, J. Am. Chem. Soc. 106 (1984) 203.Google Scholar
  7. [7]
    R.A. Firestone, Tetrahedron 52 (1996) 14459.Google Scholar
  8. [8]
    J.E. Carpenter, C.P. Sosa, J. Mol. Struct. (Theochem) 311 (1994) 325.Google Scholar
  9. [9]
    K.N. Houk, Y. Li, J.D. Evanseck, Angew. Chem., Int. Ed. Engl. 31 (1992) 682.Google Scholar
  10. [10]
    L.R. Domingo, M.J. Aurell, P. Perez, R. Contreras, J. Phys. Chem. A 106 (2002) 6871.Google Scholar
  11. [11]
    M. Manoharan, P. Venuvanalingam, J. Chem. Soc. Perkin Trans. II 9 (1997) 1799.Google Scholar
  12. [12]
    K.N. Houk, J. Gonzalez, Y. Li, Acc. Chem. Res. 28 (1995) 81.Google Scholar
  13. [13]
    R.K. Bansal, N. Gupta, S.K. Kumawat, Tetrahedron 62 (2006) 1548.Google Scholar
  14. [14]
    L.R. Domingo, E. Chamorro, P. Perez, J. Phys. Chem. A. 112 (2008) 4046.Google Scholar
  15. [15]
    J.W. Storer, L. Raivnondi, K.N. Houk, J. Am. Chem. Soc. 116 (1994) 9675.Google Scholar
  16. [16]
    M.J.S. Dewar, S. Olivella, J.J.P. Stewart, J. Am. Chem. Soc. 108 (1986) 5771.Google Scholar
  17. [17]
    S. Sakai, J. Mol. Struct. (Theochem.) 630 (2003) 177.Google Scholar
  18. [18]
    H.O. Ho, W.K. Li, J. Mol. Struct. (Theochem.) 712 (2004) 49.Google Scholar
  19. [19]
    R. Robiette, J. Marchand-Brynaert, D. Peeters, J. Org. Chem. 67 (2002) 6823.Google Scholar
  20. [20]
    H. Jiao, P.V.R. Schleyer, Angew. Chem., Int. Ed. Eng. 32 (1993) 1763.Google Scholar
  21. [21]
    E. Matito, J. Poater, M. Duran, M. Solà, J. Mol. Struct. (Theochem.) 727 (2005) 165.Google Scholar
  22. [22]
    C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 90 (1989) 2154.Google Scholar
  23. [23]
    C. Gonzalez, H.B. Schlegel, J. Phys. Chem. 94 (1990) 5523.Google Scholar
  24. [24]
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, J.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachair, J.B. Foresman, J.V. Ortiz, Q. Cui, I. Baboul, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision A.03. Gaussian, Inc., Pittsburgh, PA, 2003.Google Scholar
  25. [25]
    J. Poater, X. Fradera, M. Duran, M. Solà, Chem. Eur. J. 9 (2003) 400.Google Scholar
  26. [26]
    R.F.W. Bader, AIM2000 Program, ver 2.0, Hamilton; McMaster University, 2000.Google Scholar
  27. [27]
    S. Noorizadeh, H. Maihami, J. Mol. Struct. (Theochem.) 763 (2006) 133.Google Scholar
  28. [28]
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899.Google Scholar
  29. [29]a)
    C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91 (1991) 165Google Scholar
  30. b).
    C.G. Swain, E.C. Lupton Jr., J. Am. Chem. Soc. 90 (1968) 4328.Google Scholar
  31. [30]
    M. Boulanger, T. Leyssens, R. Robiette, D. Peeters, J. Mol. Struct. (Theochem.) 731 (2005) 101.Google Scholar
  32. [31]
    M.G. Evans, E. Warhurst, Trans. Faraday Soc. 34 (1938) 614.Google Scholar

Copyright information

© Iranian Chemical Society 2010

Authors and Affiliations

  1. 1.Department of Chemistry, College of SciencesShiraz UniversityShirazIran

Personalised recommendations