Journal of the Iranian Chemical Society

, Volume 5, Issue 3, pp 425–429 | Cite as

Study of hydrogen adsorption on FeTi using molecular dynamics simulations

  • R. Alizadeh
  • S. Jalili


We have used molecular dynamics simulation to study the adsorption isotherms of molecular hydrogen on FeTi at several temperatures ranging from 60 to 100 K. Adsorption coverage, isosteric heat, and binding energy were calculated at different temperatures and pressures. The results indicated that FeTi can be used as an ideal hydrogen storage material. The surface coverage or total amount of hydrogen adsorbed on FeTi is between 0.28 to 0.35.


FeTi Molecular dynamics simulation Adsorption Isotherm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Q. Yang, C. Zhang, Phys. Chem. Lett. B 109 (2005) 11862.Google Scholar
  2. [2]
    Y.F. Yin, T. Mays, B. McEnaney, Lagmuir 16 (2000) 10521.Google Scholar
  3. [3]
    G.E. Froudakis, J. Phys: Condens. Matter. 14 (2002) 453.Google Scholar
  4. [4]
    M. Jurczyk, L. Smardz, M. Makowiecka, E. Jankowska, K. Smardz, J. Phys. Chem. Solids 65 (2004) 545.Google Scholar
  5. [5]
    B.K. Singh, A.K. Singh, C.S. Pandey, O.N. Srivastave, Int. J. Hydrogen Energy. 24 (1999) 1072.Google Scholar
  6. [6]
    S. Morris, S.B. Dodd, P.J. Hall, A.J. Mackinnon, L.E.A. Berlouis, J. Alloy Compd. 239 (1999) 458.Google Scholar
  7. [7]
    M. Abe, T. Kokaji, K. Oishi, T. Haraki, H. Uchida, Y. Miyamoto, S. Uchida, Proceedings of International Hydrogen Energy Congress and Exhibition IHEC 2005, Istanbul, Turkey, 13-15 July 2005.Google Scholar
  8. [8]
    E.M.B. Heller, A.M. Vredenberg, D.O. Boerma, Appl. Surf. Sci. 253 (2006) 771.Google Scholar
  9. [9]
    E.M.B. Heller, A.M. Vredenberg, D.O. Boerma, Appl. Surf. Sci. 253 (2006) 1150.Google Scholar
  10. [10]
    S.E. Kulkova, S.V. Eremeev, V.E. Egorushkin, J.S. Kim, S.Y. Oh, Solid State Commun. 126 (2003) 405.Google Scholar
  11. [11]
    A. Kinaci, M.K. Aydinol, Int. J. Hydrogen Energy 32 (2007) 2466.Google Scholar
  12. [12]
    J.J. Reilly, R.H. Wiswall, J. Inorg. Chem. 13 (1974) 218.Google Scholar
  13. [13]
    J.W. Ponder, Tinker, Software Tools for Molecular Design, version 4.2, Saint Louis. Mo., 2001.Google Scholar
  14. [14]
    S.L. Mayo, B.D. Olafson, W.A. Godard III, J. Phys. Chem. 94 (1990) 8897.Google Scholar
  15. [15]
    A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, J. Am. Chem. Soc. 114 (1992) 10024.Google Scholar
  16. [16]
    S.Y. Chang, J. Chem. Phys. 56 (1972) 4.Google Scholar
  17. [17]
    A. Kellou, Z. Nabi, A. Tadjer, N. Amrane, N. Fenineche, H. Aourag, Phys. Stat. Sol. (B) 239 (2003) 389.Google Scholar
  18. [18]
    D. Beeman, J. Comput. Phys. 20 (1976) 130.Google Scholar
  19. [19]
    R.M. Ziff, Comput. Phys. 12 (1998) 385.Google Scholar
  20. [20]
    J.G. Dash, Films on Solid Surfaces, Academic Press, New York, 1975.Google Scholar
  21. [21]
    S.E. Weder, S. Talapatra, C. Journet, A. Zambano, A.D. Migone, Phys. Rev. B 61 (2000) 13150.Google Scholar
  22. [22]
    G. Stan, S. Gatica, M. Boninsegni, S. Curtarolo, M.W. Cole, Am. J. Phys. 67 (1999) 1170.Google Scholar

Copyright information

© Iranian Chemical Society 2008

Authors and Affiliations

  1. 1.Center of Environmental and Energy Researches (CEERS)Islamic Azad University, Science and Research BranchTehranIran
  2. 2.Department of ChemistryK. N. Toosi University of TechnologyTehranIran
  3. 3.Computational Physical Sciences Research Laboratory, Department of Nano-ScienceInstitute for Studies in Theoretical Physics and Mathematics (IPM)TehranIran

Personalised recommendations