Advertisement

Journal of the Iranian Chemical Society

, Volume 3, Issue 4, pp 334–339 | Cite as

Upper consolute temperature of water-phenol systems with some additives

  • M. Singh
Article
  • 193 Downloads

Abstract

Using upper consolute temperatures (UCT) and corresponding consolute compositions (CC) of water-phenol systems with each of 0.1 mol kg−1 salts and acids, 1.0% polyethylene glycol 200, 0.01 mol kg−1 surfactant and aromatic compounds, we obtained 0.01 mol kg−1 CaF2 and CrCl3 compositions. Focusing on UCT and CC, the role of valence electrons and shell number, basicity, hydrophilic, hydrophobic and π conjugated electrons of corresponding additives are reported. The surfactants and π conjugation electrons are noted to decrease the UCT in a constant ratio that depicts the state and inherent strength of ionic and molecular-water interactions. The data are useful in the investigation of cloud points of immiscible solutions based on the Hofmeister series.

Keyword

Upper consolute temperature Hydrophilic Hydrophobic Molecular interaction π conjugation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Singh, Pak. J. Sci. Ind. Res. 303 (2005) 48.Google Scholar
  2. [2]
    Y. Moroi, J. Colloid Interface Sci. 122 (1988) 308.Google Scholar
  3. [3]
    M. Singh, H. Chand, K.C. Gupta, Chemistry and Biodiversity 809 (2005) 2.Google Scholar
  4. [4]
    A.W. Neumann, S.N. Omenyi, C.J. van Oss, Colloid. Polym. Sci. 257 (1979) 413.Google Scholar
  5. [5]
    V. Fried, H.F. Hameka, U. Blukis, Ahysical Chemistry, Macmillan Publishing Co., Inc., New York, 1977, pp. 229–232.Google Scholar
  6. [6]
    M.L. McGlashan, J. Chem. Thermodyn. 22 (1990) 653.Google Scholar
  7. [7]
    J.H. Wang, B.C. Baltzis, G.A. Lewandowski, Biotechnol. Bioeng. 51 (1996) 87.Google Scholar
  8. [8]
    J. Mandelstan, G.A. Jacob, J. Biochem. 94 (1974) 569.Google Scholar
  9. [9]
    R. Bhat, J.C. Ahluwalia, J. Phys. Chem. 89 (1985) 1099.Google Scholar
  10. [10]
    H.M. Luis Da Silva, W. Loh, J. Am. Chem. Soc. 104 (2000) 10069.Google Scholar
  11. [11]
    W. Steven Rick, J. Phys. Chem. 104 (2000) 6884.Google Scholar
  12. [12]
    G. Nemethy, H.A. Scheraga, J. Chem. Phys. 3382 (1962) 36.Google Scholar
  13. [13]
    D. Yang, J. Am. Soc. 121 (1999) 3555.Google Scholar
  14. [14]
    S. Paljk, C. Klofutar, J. Chem. Soc. Faraday Trans. I 2159 (1978) 75.Google Scholar
  15. [15]
    A. Suggeti, J. Soln. Chem. 5 (1976) 17.Google Scholar
  16. [16]
    H.S. Frank, F. Frank, J. Chem. Phys. 4746 (1968) 48.Google Scholar
  17. [17]
    Y. Shinich, K. Hiroko, M. Keilko, J. Phys. Chem. 104 (2000) 10242.Google Scholar
  18. [18]
    M. Singh, J. Indian Chem. Soc. 78 (2001) 397.Google Scholar
  19. [19]
    R.N. Barnet, U. Landman, J. Phys. Chem. 13950 (1996) 100.Google Scholar
  20. [20]
    G. Barone, B. Bove, G. Castronuovo, V. Elia, J. Solution Chem. 10803 (1981).Google Scholar
  21. [21]
    M. Singh, A. Kumar, J. Solution Chem. 567 (1981) 35.Google Scholar
  22. [22]
    M. Singh, J. Biochem. Biophys. Methods, 151 (2006) 67.Google Scholar

Copyright information

© Iranian Chemical Society 2006

Authors and Affiliations

  1. 1.Chemistry Research Lab, Deshbandhu CollegeUniversity of DelhiNew DelhiIndia

Personalised recommendations