Advertisement

Journal of the Iranian Chemical Society

, Volume 2, Issue 4, pp 244–267 | Cite as

The identification of toxicophores for the prediction of mutagenicity, hepatotoxicity and cardiotoxicity

  • G. H. Hakimelahi
  • G. A. Khodarahmi
Review

Abstract

The toxic properties of compounds can be related to chemical structures, and more specifically, to particular substructures, called toxicophores. Reliability and accuracy of mutagenicity, hepatotoxicity, or cardiotoxicity predictions may be achieved by identifying toxicophores. These predictions can guide the design of chemical libraries for hit and lead optimization. As such, a thorough molecular knowledge in drug-induced toxicity is required to aid the development of new therapeutic agents and prevent the release of potentially toxic drugs onto the market. The incorporation of these potentially reactive chemical moieties within new therapeutic agents should be limited. This, however, can not always be prevented, particularly when the structural feature responsible for toxicity is also responsible for the pharmacological efficacy.

In recent years, there has been strong pressure from society in general, and from government agencies in particular, to develop “general” prediction models in order to cope with the thousands of chemicals present in the environment for which experimental data are not available and likely will never exist. Therefore, one of the objectives of this work is to introduce methodologies capable of identifying the potential environmental health hazards of chemicals. This review also summarizes the evidence for reactive metabolite formation from chemical carcinogens, hepatotoxic drugs, and also describes how and where molecules bind and inhibit hERG K+ channels, causing cardiotoxicity by QT prolongation. Such information should dramatically improve our understanding of drug-induced toxic reactions. Indeed, pharmaceutical companies are striving to improve the drug discovery and development process to identify, as early as possible, the risk of novel agents, or their metabolites, causing mutagenicity, hepatocellular toxicity, or QT interval prolongation and to make appropriate go/no-go decisions or modify their development programs accordingly.

Keyword

Toxicophore Mutagenicity Carcinogenicity Hepatotoxicity Cardiotoxicity Metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    International Conference on Harmonization: Guidance on Specific Aspects of Regulatory Genotoxicity Tests for Pharmaceuticals. Fed. Regist. 61 (1996) 18197.Google Scholar
  2. [2]a)
    J. Kazius, R. McGurie, R. Bursi, J. Med. Chem. 48 (2005) 312Google Scholar
  3. [2]b)
    M. Hammond, R.L. Elliot, M.L. Gillaspy, D.C. Hager, R.F. Hank, J.A. LaFlamme, R. M. Oliver, P.A. DaSilva-Jardine, R.W. Stevenson, C.M. Mack, J.V. Cassella, Bioorg. Med. Chem. Lett. 13 (2003) 1989Google Scholar
  4. [2]c)
    J. Ashby, R.W. Tennant, Mutat. Res. 204 (1988) 17Google Scholar
  5. [2]d)
    Chemical Carcinogenesis Research Information System is available through TOXNET at http://toxnet.nlm.nih.gov. (2e) National Toxicity Program at http://ntp-server.niehs.nih.gov.; http://www.epa.gov.; Beilstein CrossFire Commander, v 4.0, MDL Information Systems, Inc., San Leandro, CA; and http://potency.berkeley.edu/CPDB-tab.html.Google Scholar
  6. [3]
    C.S. Cooper, P.L. Grover (Eds.), Handbook of Experimental Pharmacology, Vol. 94/1, Springer-Verlag: Heidelberg, 1990, pp. 267–325.Google Scholar
  7. [4]
    L.H. Garret, C.M. Grisham, Biochemistry, Saunders College Publishing: Orlando, FL, 1995, pp. 929–932.Google Scholar
  8. [5]
    B.N. Ames, H. McCann, E.Yamasaki, Mutat. Res. 31 (1975) 347.Google Scholar
  9. [6]
    D.M. Maron, B.N. Ames, Mutat. Res. 113 (1983) 173.Google Scholar
  10. [7]
    K. Mortelmans, E. Zeiger, Mutat. Res. 455 (2000) 29.Google Scholar
  11. [8]
    W.W. Piegorsch, E. Zeiger, Measuring intra-assay agreement for Ames Salmonella assay. Lecture notes in Medicinal Informatics, Springer-Verlag: Heidelberg, 1991, pp. 35–41.Google Scholar
  12. [9]a)
    R. Benigni, A. Giuliani, R. Franke, A. Gruska, Chem. Rev. 100 (2000) 3697Google Scholar
  13. [9]b)
    R. Lahana, Drug Discovery Today 4 (1999) 447Google Scholar
  14. [9]c)
    C.G. Newton, in: P.M. Dean, R.A. Lewis (Eds.), In Molecular Diversity in Drug Design, Kluwer Academic Publishers, Dordrecht, 1999Google Scholar
  15. [9]d)
    A.P. Watt, D. Morrrison, D.C. Evans, Drug Discovery Today 5 (2000) 17Google Scholar
  16. [9]e)
    Y.T. Woo, D.Y. Lai, J.C. Arcos, M.F. Argus, M.C. Cimino, S. DeVito, L. Keifer, Environ. Carcinog. Ecotoxicol. Rev. C15 (1997) 139.Google Scholar
  17. [10]a)
    B.S. Kim, B.H. Margolin, Environ. Mol. Mutagen. 34 (1999) 297–304Google Scholar
  18. [10]b)
    F.P. Guengerich, M.S. Kim, M. Muller, L.G. Lowe, Recent results Cancer Res. 143 (1997) 449.Google Scholar
  19. [11]
    E. Zeiger, J.K. Haseman, M.D. Shelby, B.H. Margolin, R.W. Tennant, Environ. Mol. Mutagen. 16 (1990) 1.Google Scholar
  20. [12]
    M. Klein, U. Voigtmann, T. Haack, L. Erdinger, G. Boche, Mutat. Res. 467 (2000) 55.Google Scholar
  21. [13]a)
    C. Glende, H. Schmitt, L. Erdinger, G. Engelhardt, G. Boche, Mutat. Res. 498 (2001) 19Google Scholar
  22. [13]b)
    S. Srivastava, P.H. Ruane, J.P. Toscano, M.B. Sullivan, C.J. Cramer, D. Chiapperino, E.C. Reed, D.E. Falvey, J. Am. Chem. Soc.122 (2000) 8271.Google Scholar
  23. [14]
    T. Haack, L. Erdinger, G. Boche, Mutat. Res. 491 (2001) 183.Google Scholar
  24. [15]a)
    A.K. Debnath, R.L. Lopez de Compadre, G. Debnath, A.J. Shusterman, C. Hansch, J. Med. Chem. 34 (1991) 786 and references thereinGoogle Scholar
  25. [15]b)
    G.G. Cash, Mutat. Res. 491 (2001) 31Google Scholar
  26. [15]c)
    G. Streiinger, Y. Okada, J. Emrich, J. Newton, A. Tsugita, E. Terzaghi, M. Inouye, Cold Springer Harbor Symp. Quant. Biol. 31 (1966) 77.Google Scholar
  27. [16]a)
    M. Klein, L. Erdinger, G. Boche, Mutat. Res. 467 (2000) 69Google Scholar
  28. [16]b)
    H.A. Nieper, Naturwissenschaften 43 (1956) 500.Google Scholar
  29. [17]
    B.P. Cho, F.A. Beland, M.M. Marques, Biochem. 31 (1992) 9587.Google Scholar
  30. [18]
    B.P. Cho, F.A. Beland, M.M. Marques, Biochem. 33 (1994) 1373.Google Scholar
  31. [19]a)
    S. De Flora, A. Izzotti, K. Randerath, E. Randerath, H. Bartsch, J. Nair, R. Balansky, F. van Schooten, P. Degan, G. Fronza, D. Walsh, J. Lewtas, Mutat. Res. 366 (1996) 197Google Scholar
  32. [19]b)
    L.M. Eckel, T.R. Krugh, Biochem. 33 (1994) 13611.Google Scholar
  33. [20]
    L. Zhou, M. Rajabzadeh, D.D. Traficante, B.P. Cho, J. Am. Chem. Soc. 119 (1997) 5384.Google Scholar
  34. [21]
    A.K. Debnath, R.L. Lopez de Compadre, A.J. Shusterman, C. Hansch, Environ. Mol. Mutagen 19 (1992) 53.Google Scholar
  35. [22]
    D.P. Williams, B.K. Park, DDT 8 (2003) 1044 (www.drugdiscoverytoday.com) and references cited therein.Google Scholar
  36. [23]
    M. Meadows, Serious liver injury. FDA Consum. 35 (2001) 8.Google Scholar
  37. [24]
    S. Michelson, K. Joho, Curr. Opin. Mol. Ther. 2 (2000) 651.Google Scholar
  38. [25]
    S.D. Nelson, Adv. Exp. Med. Biol. 500 (2001) 33.Google Scholar
  39. [26]
    D.E. Slaughter, R.P. Hanzlik, Chem. Res. Toxicol. 4 (1991) 349.Google Scholar
  40. [27]
    U.A. Boelsterli, Curr. Drug. Metab. 3 (2002) 439.Google Scholar
  41. [28]
    U.A. Boelsterli, Curr. Opin. Drug Discov. Devel. 6 (2003) 81.Google Scholar
  42. [29]
    B.K. Park, Toxicology 153(2000) 39.Google Scholar
  43. [30]
    Uetrecht, J.P. Chem. Res. Toxicol. 12 (1999) 887.Google Scholar
  44. [31]
    M. McMahon, J. Biol. Chem. 278 (2003) 21592.Google Scholar
  45. [32]
    J. Lazarou, J. Am. Med. Assoc. 279 (1998) 1200.Google Scholar
  46. [33]
    B.K. Park, N.R. Kitteringham, J.L. Maggs, M. Pirmohamad, D.P. Williams, Annu. Rev. Pharmacol. Toxicol. 45 (2005) 177.Google Scholar
  47. [34]
    W.M. Lee, New. Engl. J. Med. 349 (2003) 474.Google Scholar
  48. [35]
    E. Miller, J. Miller, Cancer Res. 7 (1947) 468.Google Scholar
  49. [36]
    E. Miller, J. Miller, Cancer Res. 12 (1952) 547.Google Scholar
  50. [37]
    B.B. Brodie, W.D. Reid, A.K. Cho, G. Sipes, G. Krishna, J.R. Gillette, Natl. Acad. Sci. USA, 68 (1971) 160.Google Scholar
  51. [38]
    J.R. Gillette, J.R. Mitchell, B.B. Brodie, Annu. Rev. Pharmacol. 14 (1974) 271.Google Scholar
  52. [39]
    M.A. Tirmenstein, S.D. Nelson, J. Biol. Chem. 264(1989) 9814.Google Scholar
  53. [40]
    H.J. Gonzalez, S. Kimura, Cancer Lett. 143 (1999) 199.Google Scholar
  54. [41]
    C.J. Henderson, A.G. Smith, J. Ure, K. Brown, E.J. Bacon, C.R. Wolf, Proc. Natl., Acad, Sci. USA, 95 (1998) 5275.Google Scholar
  55. [42]
    P. Carthew, K.J. Rich, E.A. Martin, F. De Matteis, C. K. Lim, Carcinogenesis 16 (1995) 1299.Google Scholar
  56. [43]
    D.J. Boocock, J.L. Maggs, K. Brown, I.N.H. White, B. K. Park, Carcinogenesis 21 (2000) 1851.Google Scholar
  57. [44]
    J.L. Raucy, J.M. Lasker, C.S. Lieber, M. Black, Arch. Biochem. Biophys. 271 (1989) 170.Google Scholar
  58. [45]
    C. Goldring, N. Kitteringham, R. Elsby, L. Randle, Y. Clement, Hepatology 39 (2004) 1267.Google Scholar
  59. [46]
    J.G. Kenna, J. Hepatol. 26 (1997), (Suppl. 1) 5.Google Scholar
  60. [47]
    N.R. Kitteringham, J.G. Kenna, B.K. Park, Br. J. Clin. Pharmacol. 40 (1995) 379.Google Scholar
  61. [48]
    J.R. Mitchell, H.J. Zimmerman, K.G. Ishak, U.P. Thorgeirsson, J.A. Timbrell, Ann. Intern. Med. 84 (1976) 181.Google Scholar
  62. [49]
    H.J. Zimmerman, Semin. Liver Dis. 10 (1990) 322.Google Scholar
  63. [50]
    T.C. Sarich, T. Zhou, S.P. Adams, A.I. Bain, R.A. Wall, J.M.A. Wright, J. Pharmacol. Toxicol. Methods. 34 (1995) 109.Google Scholar
  64. [51]
    D.A. Rozwarski, G.A. Grant, D.H. Barton, W.R.Jr. Jacobs, J.C. Sacchettini, Science 279 (1998) 89.Google Scholar
  65. [52]
    J.R. Kenny, J.L. Maggs, X. Meng, D. Sinnott, S.E. Clarke, J. Med. Chem. 47 (2004) 2816.Google Scholar
  66. [53]
    M.P. Grillo, F. Hua, C.G. Knutson, J.A. Ware, C. Li, Chem. Res. Toxicol. 16 (2003) 1410.Google Scholar
  67. [54]
    S. Shen, M.R. Marchick, M.R. Davis, G.A. Doss, L.R. Pohl, Chem. Res. Toxicol. 12 (1999) 214.Google Scholar
  68. [55]
    W. Tang, R.A. Stearns, S.M. Bandiera, Y. Zhang, C. Raab, Drug Metab. Dispos. 27 (1999) 365.Google Scholar
  69. [56]
    G.H. Hakimelahi, G. Sh Gassanov, M.-H. Hsu, J.R. Hwu, S. Hakimelahi, Bioorg. Med. Chem. 10 (2002) 1321.Google Scholar
  70. [57]
    Y. Masubuchi, A. Ose, T. Horie, Drug Metab. Dispos. 30 (2002) 1143.Google Scholar
  71. [58]
    U.A. Boelsterli, Mechanistic Toxicology; Lonndon: Taylor & Francis, 2003, Chapter 9, p. 202.Google Scholar
  72. [59]a)
    K.G. Tolman, J. Chandramouli, Clin. Liver Dis. 7 (2003) 369Google Scholar
  73. [59]b)
    K. Kassahun, P.G. Pearson, W. Tang, I. McIntoch, K. Leung, Chem. Res. Toxicol. 14 (2001) 62Google Scholar
  74. [59]c)
    J.N. Tettey, J.L. Maggs, W.G. Rapeport, M. Pirmohamed, B.K. Park, Chem. Res. Toxicol. 14 (2001) 65.Google Scholar
  75. [60]
    U.A. Boelsterli, Toxicol. Appl. Pharmacol. 192 (2003) 307.Google Scholar
  76. [61]
    A.J. Scheen, Drug Saf.24 (2001) 873.Google Scholar
  77. [62]
    D.J. Graham, L. Green, J.R. Senior, P. Nourjah, Am. J. Med. 114 (2003) 299.Google Scholar
  78. [63]a)
    Z. Jayyosi, M. Muc, M. Gallagher, H. Toutain, J. Stevens, M. Kelley, Proc. N. Am. ISSX Meet., 9th., Nashville, 2004, Oct., 24, p. 200Google Scholar
  79. [63]b)
    M.T. Smith, Chem. Res. Toxicol.16 (2003) 679.Google Scholar
  80. [64]a)
    B. Fermini, A.A. Fossa, Nature Rev. Drug Discov. 2 (2003) 439Google Scholar
  81. [64]b)
    M. Roy, R. Dumaine, A.M. Brown, Circulation94 (1996) 817.Google Scholar
  82. [65]
    S.-H. Jo, J.B. Youm, C.O. Lee, Y.E. Earm, W.-K. Ho, Br. J. Pharm. 129 (2000) 1474.Google Scholar
  83. [66]
    H.R. Alderton, Can. J. Psychiatry 40 (1995) 325.Google Scholar
  84. [67]
    M.W. Nowak, N.M. Zacharias, A.A. Kulkarni, J.B. Nicholas, H.P. Lesso, S.J. Reyes, S. dee Sahba, B. Lally, E.D. Mackey, N. Shiva, P.B. Bennett, Neurion Pharmaceuticals Inc., 2004, www.neurionpharma.com.Google Scholar
  85. [68]
    S. Ekins W.J. Crumb, R.D. Sarazan, J.H. Wikel, S.A. Wrighton, J. Pharmacol. Exp. Thera. 301 (2002) 427.Google Scholar
  86. [69]a)
    R.G. Pearson, Hard and Soft Acids and Bases. Hutchinson & Ross: Canada, 1973; b) D.P. Williams, Mol. Pharmacol. 58 (2000) 207.Google Scholar
  87. [70]
    M. Pirmohamed, B.K. Park, CNS Drugs 7 (1997) 139.Google Scholar
  88. [71]
    J.P. Uetrecht, Curr. Opin. Drug Didcov. Devel.4 (2001) 55.Google Scholar
  89. [72]a)
    G.H. Hakimelahi, T. Sambaiah, J.-L. Zhu, K.S. Ethiraj, M. Pasdar, S. Hakimelahi, Eur. J. Med. Chem. 37 (2002) 207Google Scholar
  90. [72]b)
    D.C. Evans, A.P. watt, D.A. Nicoll-Griffith, T.A. Baillie, Chem. Res. Toxicol. 17 (2004) 3.Google Scholar
  91. [73]
    J.W. Drake, R.H. Baltz, Annu. Rev. Biochem. 45 (1976) 11 (see: http://www.annualreviews.org/aronline; http://pharmtox.annualreviews.org).Google Scholar
  92. [74]
    G. Klopman, H.S. Rosenkranz, Tox. Lett. 79 (1995) 145.Google Scholar
  93. [75]
    H.S. Rosenkranz, G. Klopman, in: A.M. Goldberg, M. L. Principe (Eds.), Expert System Approach to the Prediction and Elucidation of the Structural Basis of Toxicological Activities. Alternative Methods in Toxicology, Mary Ann. Liebert, 1991, pp 145-162.Google Scholar
  94. [76]
    G. Klopman, H.S. Rosenkranz, Environ. Health Perspect. 96 (1991) 67.Google Scholar
  95. [77]
    G. Klopman, I. Kolossvary, J. Math. Chem. 5 (1990) 389.Google Scholar
  96. [78]
    D.G. Bailey, Can. J. Clin. Pharmacol. 2 (1995) 10.Google Scholar
  97. [79]
    M. Delaforge, Nucl. Med. Biol. 25 (1998) 705.Google Scholar
  98. [80]
    O. Llorenz, J.J. Perez, H.O. Villar, J. Med. Chem. 44 (2001) 2793.Google Scholar

Copyright information

© Iranian Chemical Society 2005

Authors and Affiliations

  1. 1.TaiGen BiotechnologyTaipeiTaiwan ROC
  2. 2.Institutes of Biochemistry and BiophysicsUniversity of TehranTehranIran
  3. 3.Department of Medicinal Chemistry, Faculty of PharmacyIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations