Journal of the Iranian Chemical Society

, Volume 8, Issue 3, pp 794–802 | Cite as

Kinetics, mechanism and synthesis of adduct formation of tetraaza Schiff base cobalt(II) complexes as donor with diorganotin(IV)dichlorides as acceptor

  • Z. Asadi
  • M. Asadi
  • F. Mosalanezhad


The kinetics and mechanism of the adduct formation of diorganotin(IV)dichlorides (R2SnCl2), where R = Ph, Me, Bu, with Co(II) tetraaza Schiff base complexes such as: [Co(appn)][N,N′-1,2-propylenebis(o-amino-α-phenylbenzylideneiminato) cobalt(II)] and [Co(cappn)]{[N,N′-1,2-proylenebis(5-chloro-o-amino-α-phenylbenzylideneiminato)cobalt(II)]}, were studied spectrophotometrically. The kinetic parameters and the rate constant values show the acceptor tendency trend for the diorganotin(IV)dichlorides as follows: Ph2SnCl2 > Me2SnCl2 > Bu2SnCl2. Adducts were separately synthesized and fully characterized by 119Sn NMR, IR, UV-Vis spectra and elemental microanalysis (C.H.N) methods. The trend of the rate constants for the adduct formation of the cobalt complexes with a given tin acceptor decreased as follows: Co(appn) > Co(cappn). The linear plots of k obs vs. the molar concentration of the diorganotin(IV)dichlorides, the high span of the second order rate costant k 2 values and the large negative values of ΔS suggest an associative (A) mechanism for the acceptor-donor adduct formation.II Moreover, [Co(aptn)][N,N′-1,3-propylenebis-(o-amino-α-phenylbenzylideneiminato)cobalt(II)] and [Co(captn)][N,N′-1,3- proylenebis-(5-chloro-o-amino-αphenylbenzylideneiminato)cobalt(II)] were synthesized and characterized but, their kinetics with R2SnCl2 were so fast that it was impossible to follow them using the conventional methods.


Diorganotin(IV)dichlorides Kinetic Mechanism Tetraaza Schiff base Cobalt(II) complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.P. Raptopoulou, A.N. Papadopoulos, D.A. Malamatari, E. Loannidis, G. Molsidis, A. Terzis, D.P. Kessissoglou, Inorg. Chim. Acta 272 (1998) 283.Google Scholar
  2. [2]
    R. Pignatello, A. Panicol, P. Mazzone, M. Pinizzotto, A. Garozzo, P. Furneri, J. Med. Chem. 29 (1994) 781.Google Scholar
  3. [3]
    L. Guofa, S. Tongshun, Z. Yonghian, J. Mol. Struct. 412 (1997) 75.Google Scholar
  4. [4]
    M.D. Hobday, T.D. Smith, J.Chem. Soc. A (1971) 1453.Google Scholar
  5. [5]
    L. Pellerito, R. Cefalu, A. Gianguzza, R. Barbieri, J. Organomet. Chem. 70 (1974) 303.Google Scholar
  6. [6]
    T.N. Strivastava, A.K.S. Chauhan, M. Agarwal, Transition. Met. Chem. 3 (1978) 378.Google Scholar
  7. [7]
    D. Cunningham, J. Fitzgerald, M. Little, J. Chem. Soc. Dalton Trans. (1987) 2261.Google Scholar
  8. [8]
    D. Cunningham, J. McGinley, J. Chem. Soc. Dalton Trans. (1992) 1387.Google Scholar
  9. [9]
    D. Cunningham, J.F. Gallagher, T. Higgins, P. McArdle, J. McGinley, M. O, Gara, J. Chem. Soc. Dalton Trans. (1993) 2183.Google Scholar
  10. [10]
    N. Clarke, D. Cunningham, T. Higgins, P. McArdel, J. McGinley, M. O’Gara, J. Organomet. Chem. 469 (1994) 33.Google Scholar
  11. [11]
    H.D. Yin, S.W. Chen, J. Organomet. Chem. 691 (2006) 3103.Google Scholar
  12. [12]
    M. Nath, H. Singh, G. Eng, X. Song, J. Organomet. Chem. 693 (2008) 2541.Google Scholar
  13. [13]
    M. Nath, P.K. Saini, G. Eng, X. Song, J. Organomet. Chem. 693 (2008) 2271.Google Scholar
  14. [14]
    H.X. Yu, J.F. Ma, G.H. Xu, S.L. Li, J. Yang, Y.Y. Liu, Y.X. Cheng, J. Organomet. Chem. 691 (2006) 3531.Google Scholar
  15. [15]
    M. Asadi, K. Aein Jamshid, A.H. Kyanfar, J. Coord. Chem. 61 (2008) 1115.Google Scholar
  16. [16]
    M. Asadi, K. Aein Jamshid, Transition. Met. Chem. 32 (2007) 822.Google Scholar
  17. [17]
    M. Green, P.A. Tasker, J. Chem. Soc. A (1970) 3105.Google Scholar
  18. [18]
    J. Holeĉek, M. Nadvornik, K. Handlir, A. Lycka, J. Organomet. Chem. 241 (1983) 177.Google Scholar
  19. [19]
    J. Holeĉek, M. Nadvornik, K. Handlir, A. Lycka, J. Organomet. Chem. 258 (1983) 147.Google Scholar
  20. [20]
    M. Nadvornik, J. Holeĉek, K. Handlir, A. Lycka, J. Organomet. Chem. 275 (1984) 43.Google Scholar
  21. [21]
    A. Lycka, J. Holeĉek, M. Nadvornik, K. Handlir, J. Organomet. Chem. 280 (1985) 323.Google Scholar
  22. [22]
    M.L. Tobe, J. Burgess, Inorganic Reaction Mechanism, Addison-Wesley Longman, Harlow: England, 1999, Chap. 3.Google Scholar
  23. [23]
    J. Burgess, A. Parsons, Polyhedron 12 (1993) 1959.Google Scholar
  24. [24]
    C.H. Yoder, D. Mokrynk, J.N. Spencer, S.M. Coly, R.E. Otler, A. Haines, L. Rushow, J. rganometallics. 6 (1987) 1679.Google Scholar

Copyright information

© Iranian Chemical Society 2011

Authors and Affiliations

  1. 1.College of Sciences, Shiraz UniversityChemistry DepartmentShirazIran

Personalised recommendations