Journal of the Iranian Chemical Society

, Volume 6, Issue 2, pp 277–287 | Cite as

Mechanistic investigation of oxidation of metronidazole and tinidazole with N-bromosuccinimide in acid medium: A kinetic approach



Metronidazole (MTZ) and tinidazole (TNZ) belong to nitroimidazole group of drugs used to treat infections such as ameobiasis, giardiasis and trichomoniasis. The kinetics of oxidation of MTZ and TNZ with N-bromosuccinimide (NBS) in perchloric acid medium has been investigated at 308 K. A 1:1 stoichiometry has been observed in both MTZ and TNZ cases. The oxidation reactions of both MTZ and TNZ follow the same rate law, -d[NBS]/dt = [NBS][Sub][H+]. However, in case of MTZ, at higher concentrations of H+ (0.006–0.01 mol dm−3), the rate law obtained is -d[NBS]/dt = [NBS][MTZ][H+]−1. Accelerating effect of [Cl-] and retardation of the added succinimide on the reaction rate have been observed in the case of MTZ. The reactions were examined with reference to changes in concentration of added neutral salt, ionic strength and dielectric permittivity of the medium. The overall activation parameters have been evaluated from the Arrhenius plot. The reactive oxidizing species of NBS have been determined. The main oxidation products were identified by IR and 1H NMR spectral analyses. The observed results have been explained by plausible mechanisms and the relative rate laws have been deduced.


Oxidation kinetics Metronidazole Tinidazole N-Bromosuccinimide Acid medium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.J. Isselbacher, E. Braunwald, J.D. Wilson, J.B. Martin, A.S. Fauci, D.L. Kasper, Harrison’s Principles of Internal Medicine, 13th ed., McGraw-Hill Inc., New York, 1994, pp. 594, 595, 597, 602 and 881.Google Scholar
  2. [2]
    C.O. Wilson, O. Gisvold, R.F. Doerge, Text Book of Organic Medicinal and Pharmaceutical Chemistry, 6th ed., J.B. Lippincott Co., Toronto, 1971, p. 216.Google Scholar
  3. [3]
    R. Filler, Chem. Rev. 63 (1963) 21.Google Scholar
  4. [4]
    S.K. Mavalangi, M.R. Kembhavi, S.T. Nandibewoor, Turk. J. Chem. 25 (2001) 355.Google Scholar
  5. [5]
    G. Gopalakrishnan, J.L. Hogg, J. Org. Chem. 50 (1985) 1206.Google Scholar
  6. [6]
    A.K. Singh, S. Rahmani, V. Singh, V. Gupta, Bharat Singh, Oxid. Commun. 23 (2000) 55.Google Scholar
  7. [7]
    C.P. Kathari, P.D. Pol, S.T. Nandibewoor, Inorg. React. Mechanism 3 (2002) 213.Google Scholar
  8. [8]
    K. Basavaiah, U.R. Anil kumar, Bull. Chem. Soc. Ethiopia 22 (2008) 135.Google Scholar
  9. [9]
    K. Basavaiah, U.R. Anil kumar, Proc. National. Acad. Sci. India 77A (2007) 301.Google Scholar
  10. [10]
    K. Basavaiah, U.R. Anil kumar, V. Ramakrishna, Indian J.Chem. Tech. 14 (2007) 313.Google Scholar
  11. [11]
    K. Basavaiah, V. Ramakrishna, B. Somashekara, Acta Pharma 57 (2007) 87.Google Scholar
  12. [12]
    R. Ramachandrappa, Puttaswamy, S.M. Mayanna, N.M. Made Gowda, Int. J. Chem. Kinet. 30 (1998) 407.Google Scholar
  13. [13]
    K.N. Mohana, P.M. Ramdas Bhandarkar, J. Chin. Chem. Soc. 54 (2007) 1223.Google Scholar
  14. [14]
    F. Feigl, V. Anger, Spot Tests in Organic Analysis, Elsevier, New York, 1975, pp. 132, 195 and 203.Google Scholar
  15. [15]
    A.I. Vogel, Text Book of Practical Organic Chemistry, 5th ed., ELBS & Longman, London, 1989, p. 1332.Google Scholar
  16. [16]
    C.P. Kathari, R.M. Mulla, S.T. Nandibewoor, Oxid. Commun. 28 (2005) 579.Google Scholar
  17. [17]
    B. Singh, L. Pandey, J. Sharma, S.M. Pandey, Tetrahedran 38 (1982) 169.Google Scholar
  18. [18]
    B. Thimmegowda, J. Iswara Bhat, Indian J. Chem. 28A (1989) 43.Google Scholar
  19. [19]
    A.K. Singh, S. Rahmani, V.K. Singh, V. Gupta, D. Kesarwani, B. Singh, Indian J. Chem. 40A (2001) 519.Google Scholar
  20. [20]
    G. Gopalakrishnan, B.R. Pai, N. Venkatasubramanian, Indian J. Chem. B 19 (1980) 293.Google Scholar
  21. [21]
    J.M. Antelo, F. Arce, J. Crugeiras, M. Parajo, J. Phys. Org. Chem. 10 (1997) 631.Google Scholar
  22. [22]
    N. Venkatasubramanian, V. Thiagarajan, Can. J. Chem. 47 (1969) 694; Indian J. Chem. 8 (1970) 809.Google Scholar
  23. [23]
    C. Karunakaran, K. Ganapathy, J. Phy. Org. Chem. 3 (1990) 235.Google Scholar
  24. [24]
    A.L. Harihar, M.R. Kembhavi, S.T. Nindibewoor, J. Indian Chem. Soc. 76 (1999) 128.Google Scholar
  25. [25]
    E.S. Amis, Solvent Effects on Reaction Rates and Mechanisms, Academic Press, New York, 1966.Google Scholar
  26. [26]
    B. Bhargava, B. Sethuram, T.N. Rao, Indian J. Chem. 16A (1978) 651.Google Scholar
  27. [27]
    K.J. Laidler, Chemical Kinetics, Tata-McGraw-Hill, Mumbai, India, 1965, p. 227.Google Scholar
  28. [28]
    Puttaswamy, J.P. Shubha, R.V. Jagadeesh, Transition. Met. Chem. 32 (2007) 991.Google Scholar
  29. [29]
    P. Spacu, H. Dumitrescu, An. Univ. Bucaresti. Chim. 19 (1970) 17.Google Scholar

Copyright information

© Iranian Chemical Society 2009

Authors and Affiliations

  1. 1.Department of Studies in ChemistryUniversity of MysoreMysoreIndia

Personalised recommendations