Advertisement

Journal of the Iranian Chemical Society

, Volume 5, Issue 1, pp 48–56 | Cite as

Thermal, solution and structural studies of a 3D Ag(I) coordination polymer with various Ag-Ag bonds, [Ag3(μ-Hbtc)(μ-H2btc)]n

  • K. Akhbari
  • A. Morsali
Article

Abstract

[Ag3(μ-Hbtc)(μ-H2btc)]n (H3btc = 1,3,5-benzenetricarboxylic acid) (1), a new rarely reported Ag(I) three-dimensional coordination polymer with several Ag-Ag bonds, has been synthesized, characterized by elemental analysis and IR spectroscopy and its structure determined by single-crystal X-ray diffraction. The thermal stability of compound 1 was studied by thermal gravimetric and differential thermal analyses. The single crystal X-ray analysis of compound 1 shows that the complex consists of [Ag3(μ-Hbtc)(μ-H2btc)] subunits containing four different Ag environments. The results of studies of the stoichiometry and complex formation in methanol solution supported their solid state stoichiometry.

Keywords

Silver(I) 1,3,5-Benzenetricarboxylic acid Ag-Ag interaction Coordination polymer Solution Thermal study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]a)
    S.R. Batten, R. Robson, Angew. Chem. 110 (1998) 1558Google Scholar
  2. [1]b)
    Angew. Chem., Int. Ed. 37 (1998) 1460Google Scholar
  3. [1]c)
    P.J. Stang, Chem. Eur. J. 4 (1998) 19Google Scholar
  4. [1]d)
    A.J. Blake, N.R. Champness, P. Hubberstey, W.-S. Li, M. Schröder, M.A. Withersby, Coord. Chem. Rev. 183 (1999) 117Google Scholar
  5. [1]e)
    B. Moulton, M. Zaworotko, Chem. Rev. 101 (2001) 1629Google Scholar
  6. [1]f)
    M. Oh, G.B. Carpenter, D.A. Sweigart, Angew. Chem., Int. Ed. 42 (2003) 2026.Google Scholar
  7. [2]
    M.L. Tong, X.M. Chen, B.H. Ye, L.N. Ji, Angew. Chem. 111 (1999) 2376.Google Scholar
  8. [3]
    M.L. Tong, X.M. Chen, B.H. Ye, L.N. Ji, Angew. Chem., Int. Ed. 38 (1999) 2237.Google Scholar
  9. [4]
    C.M. Che, Z. Mao, V.M. Miskowski, M.C. Tse, C.K. Chan, K.K. Cheung Phillips, D.L. Leung, Angew. Chem. 112 (2000) 4250.Google Scholar
  10. [5]
    C.M. Che, Z. Mao, V.M. Miskowski, M.C. Tse, C.K. Chan, K.K. Cheung Phillips, D.L. Leung, Angew. Chem., Int. Ed. 39 (2000) 4084.Google Scholar
  11. [6]
    S.Q. Liu, T. Kuroda-Sowa, H. Konaka, Y. Suenaga, M. Maekawa, T. Mizutani, G.L. Ning, M. Munakata, Inorg. Chem. 44 (2005) 1031.Google Scholar
  12. [7]
    P. Pyykkö, Chem. Rev. 97 (1997) 597.Google Scholar
  13. [8]a)
    M. Jansen, Angew. Chem. Int Ed. 26 (1987) 1098Google Scholar
  14. [8]b)
    M. Jansen, Angew. Chem. 99 (1987) 1136Google Scholar
  15. [8]c)
    A.V. Virovets, N.V. Podberezskaya, J. Struct. Chem. 34 (1993) 306.Google Scholar
  16. [9]a)
    M. Melnik, R.V. Parish, Coord. Chem. Rev. 70 (1986) 157Google Scholar
  17. [9]b)
    H. Schmidbaur, Gold. Bull. 23 (1990) 11Google Scholar
  18. [9]c)
    C.E. Housecroft, Coord. Chem. Rev. 115 (1992) 117Google Scholar
  19. [9]d)
    C.E. Housecroft, Coord. Chem. Rev. 127 (1993) 187Google Scholar
  20. [9]e)
    D. Imhof, L.M. Venanzi, Chem. Soc. Rev. 23 (1994) 185.Google Scholar
  21. [10]a)
    Y. Zheng, M. Cu, J.-R. Zhang, X.-H. Bu, J. Chem. Soc., Dalton Trans. (2003) 1509Google Scholar
  22. [10]b)
    M.N. Huda, A.K. Ray, Phys. Rev. A 67 (2003) 013201–1Google Scholar
  23. [10]c)
    Q-M. Wang, T.C.W. Mak, J. Am. Chem. Soc. 123 (2001) 7594.Google Scholar
  24. [11]
    F. Luo, Y. Che, J. Zheng, Inorg. Chem. Commun. 9 (2006) 1045.Google Scholar
  25. [12]a)
    R.L. Griffith, J. Chem. Phys. 11 (1943) 499Google Scholar
  26. [12]b)
    D.S. Sagatys, G. Smith, R.C. Bott, D.E. Lynch, C.H.L. Kennard, Polyhedron 12 (1993) 709Google Scholar
  27. [12]c)
    R.C. Bott, G. Smith, D.S. Sagatys, T.C.W. Mak, D.E. Lynch, C.H. Kennard, Aust. J. Chem. 46 (1993) 1055Google Scholar
  28. [12]d)
    P.R. Wei, D.D. Wu, T.C.W. Mak, Inorg. Chim. Acta 249 (1996) 169Google Scholar
  29. [12]e)
    K. Nomiya, S. Takahashi, R. Nogachi, J. Chem. Soc., Dalton Trans. (2000) 1343.Google Scholar
  30. [13]
    D. Sun, R. Cao, W. Bi, J. Weng, M. Hong, Y. Liang, Inorg. Chim. Acta 357 (2004) 991.Google Scholar
  31. [14]
    M. Eddaoudi, H. Li, O.M. yaghi, J. Am. Chem. Soc. 122 (2000) 1391.Google Scholar
  32. [15]a)
    S.O.H. Gutschke, D.J. Price, A.K. Powell, P.T. Wood, Angew. Chem., Int. Ed. Engl. 40 (2001) 1920Google Scholar
  33. [15]b)
    Y.Z. Zheng, M.L. Tong, X.M. Chen, New J. Chem. 28 (2004) 1412Google Scholar
  34. [15]c)
    L. Xu, B. Liu, G.C. Guo, J.S. Huang, Inorg. Chem. Commun. 9 (2005) 220Google Scholar
  35. [15]d)
    R. Pech, J. Pickardt, Acta Crystallogr. C 46 (1990) 1928.Google Scholar
  36. [16]
    B. Liu, L. Xu. Inorg. Chem. Commun. 9 (2006) 364.Google Scholar
  37. [17]
    G.R. Choppin, M.Y. Redko. J. Solid State Chem. 171 (2003) 44.Google Scholar
  38. [18]a)
    T.M. Reineke, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Angew. Chem., Int. Ed. Engl. 38 (1999) 2590Google Scholar
  39. [18]b)
    F.A. Cotton, L.M. Daniels, C. Lin, C.A. Murllo, S.Y. Yu, J. Chem. Soc., Dalton Trans. (2001) 502Google Scholar
  40. [18]c)
    D.F. Sun, R. Cao, Y.C. Liang, Q. Shi, W.P. Sun, M.C. Hong, J. Chem. Soc., Dalton Trans. (2001) 2335Google Scholar
  41. [18]d)
    M. Edgar, R. Mitchell, A.M.Z. Slawin, P. Lightfoot, P.A. Wright, Chem. Eur. J. 7 (2001) 5168.Google Scholar
  42. [19]a)
    J. Tao, M.L. Tong, X.M. Chen, J. Chem. Soc., Dalton Trans. (2000) 3669Google Scholar
  43. [19]b)
    L. Pan, N.W. Zheng, Y.G. Wu, S. Han, R.Y. Yang, X.Y. Huang, J. Li, Inorg. Chem. 40 (2001) 828Google Scholar
  44. [19]c)
    K. Barthelet, J. Marrot, D. Riou, G. Ferey, Angew. Chem., Int. Ed. Engl. 41 (2002) 281.Google Scholar
  45. [20]a)
    O.M. Yaghi, G.M. Li, H.L. Li, Nature 378 (1996) 703Google Scholar
  46. [20]b)
    S.S. Chui, S.M. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283 (1999) 1148Google Scholar
  47. [20]c)
    M.P. Suh, J.W. Ko, H.J. Choi, J. Am. Chem. Soc. 124 (2002) 10976.Google Scholar
  48. [21]a)
    A. Dimos, A. Michaelides, S. Skoulika, Chem. Mater. 12 (2000) 3256Google Scholar
  49. [21]b)
    L. Pan, E.B. Woodlock, X.T. Wang, C. Zheng, Inorg. Chem. 39 (2000) 4174Google Scholar
  50. [21]c)
    F.A. Cotton, C. Lin, C.A. Murillo, Inorg. Chem. 40 (2001) 6413Google Scholar
  51. [21]d)
    W. Chen, J.Y. Wang, C. Chen, Q. Yue, H.M. Yuan, J.S. Chen, S.N. Wang, Inorg. Chem. 42 (2003) 944.Google Scholar
  52. [22]a)
    D.F. Sun, R. Cao, Y.C. Liang, Q. Shi, M.C. Hong, J. Chem. Soc., Dalton Trans. (2002) 1847Google Scholar
  53. [22]b)
    N. Snejko, E. Gutierrez-Puebla, J.L. Martinez, M.A. Monge, C. Ruiz-Valero, Chem. Mater. 14 (2002) 1879.Google Scholar
  54. [23]a)
    R. Murugavel, D. Krishnamurthy, M. Sathiyendiran, J. Chem. Soc., Dalton Trans. (2002) 34Google Scholar
  55. [23]b)
    H. Kumagai, C.J. Kepert, M. Kurmoo, Inorg. Chem. 41 (2002) 3410Google Scholar
  56. [23]c)
    D.P. Cheng, M.A. Khan, R.P. Houser, J. Chem. Soc., Dalton Trans. (2002) 4555.Google Scholar
  57. [24]
    M.J. Plater, M.R.S.J. Foreman, R.A. Howie, J.M.S. Skakle, A.M.Z. Slawin, Inorg. Chim. Acta 315 (2001) 126.Google Scholar
  58. [25]
    J. Ruiz, J.F. Javier Lopez, V. Rodriguez, J. Perez, M.C. Ramirez de Arellano, G. Lopez, J. Chem. Soc. Dalton Trans. (2001) 2683.Google Scholar
  59. [26]
    J. Barker, M. Kilner, Coord. Chem. Rev. 133 (1994) 219.Google Scholar
  60. [27]
    E. Hartmann, J.Z. Strähle, Naturforsch. 43B (1988) 818.Google Scholar
  61. [28]
    L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.Google Scholar
  62. [29]
    Mercury 1.4.1, Copyright Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK, 2001-2005.Google Scholar
  63. [30]
    M. Jansen, Angew. Chem., Int. Ed. Engl. 26 (1987) 1098.Google Scholar
  64. [31]
    B. Coyle, M. McCann, K. Kavanagh, M. Devereux, V. Mckee, N. Kayal, D. Egan, C. Deagan, G.J. Finn, J. Inorg. Biochem. 98 (2004) 1361.Google Scholar
  65. [32]
    V.T. Yilmaz, S. Hamamci, W.T.A. Harrison, C. Thöne, Polyhedron 24 (2005) 693.Google Scholar
  66. [33]
    L.S. Ahmet, J.R. Dilworth, J.R. Miller, N. Wheatley, Inorg. Chim. Acta 278 (1998) 229.Google Scholar
  67. [34]
    S.-P. Yang, H.-L. Zhu, X.-H. Yin, X.-M. Chen, L.-N. Ji, Polyhedron 19 (2000) 2237.Google Scholar
  68. [35]
    I. Ino, L. Ping, M. Munakata, M. Maekawa, Y. Suenaga, T. Kuroda-Sowa, Y. Kitamori, Inorg. Chem. 39 (2000) 2146.Google Scholar
  69. [36]
    E. Bosch, C.L. Barnes, Inorg. Chem. 41 (2002) 2543.Google Scholar
  70. [37]
    J.A. R. Navarro, J.M. Salas, M.A. Romero, R. Faure, J. Chem. Soc., Dalton Trans. (1998) 901.Google Scholar
  71. [38]
    A.L. Pickering, D.-L. Long, L. Cronin, Inorg. Chem. 43 (2004) 4953.Google Scholar
  72. [39]
    M. Barceló-Oliver, A. Tasada, J.J. Fiol, A. Garcìa-Raso, A. Terrón, E. Molins, Polyhedron 25 (2006) 71.Google Scholar
  73. [40]
    M.R. Ganjali, A. Rouhollahi, A.R. Mardan, M. Shamsipur, J. Chem. Soc., Faraday Trans. 94 (1998) 1959.Google Scholar
  74. [41]
    A. Fakhari, M. Shamsipur, J. Incl. Phenom. 26 (1996) 243.Google Scholar
  75. [42]
    V.A. Nicely, J.L. Dye, J. Chem. Educ. 49 (1971) 443.Google Scholar

Copyright information

© Iranian Chemical Society 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesTarbiat Modares UniversityTehranIslamic Republic of Iran

Personalised recommendations