Journal of the Iranian Chemical Society

, Volume 3, Issue 1, pp 22–31 | Cite as

Corresponding states theory and thermodynamic properties of liquid alkali metals

  • M. H. Mousazadeh
  • A. Khanchi
  • M. Ghanadi Marageh


According to phenomenological scaling and the law of corresponding states, reduced coordinates F *-T *, where F* represents the reduced thermodynamic properties (enthalpy of vaporization, speed of sound, surface tension, saturated liquid density) and T * is the reduced temperature, are introduced for the prediction of the thermodynamic properties of alkali metals. Values of the thermodynamic properties from the melting point up to boiling point are correlated. It has been shown that the correlation between reduced thermodynamic properties, as well as with the reduced temperature, can be expressed as a unique straight-line plot with a linear correlation coefficient of 0.9998. The proposed correlation has a simple form for easy calculation, requires only the melting and boiling point parameters, which are usually easy to acquire, and can predict the thermodynamic properties from the melting temperature up to the boiling temperature accurately.


Corresponding states Alkali metals Thermodynamic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.L. Rowley, Statistical Mechanics for Thermophysical Property Calculations, PTR Prentice Hall, Englewood Cliffs, NJ, 1994.Google Scholar
  2. [2]
    S. Ganesh Prakash, R. Ravi, R.P. Chhabra, Chem. Phys. 302 (2004) 149.Google Scholar
  3. [3]
    J.S. Rowlinson, F.S. Swinton, Liquids and Liquid Mixtures, 3rd ed., Butterworths, London, 1982.Google Scholar
  4. [4]
    T.W. Leland, P.S. Chappelear, Ind. Eng. Chem. 60 (1968) 15.Google Scholar
  5. [5]
    R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, 2001.Google Scholar
  6. [6]
    A.D. Pasternak, Mater. Sci. Eng. 3 (1968) 65.Google Scholar
  7. [7]
    A.D. Pasternak, Mater. Phys. Chem. Liq. 3 (1972) 41.Google Scholar
  8. [8]
    T. Iida, R. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993.Google Scholar
  9. [9]
    N.B. Vargaftik, Y.K. Vinogradov, V.S. Yargin, Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures, 3rd ed., Begell House, New York, 1996.Google Scholar
  10. [10]
    K.M. Watson, Ind. Eng. Chem. 35 (1943) 398.Google Scholar
  11. [11]
    L.W. Fish, J. Lielmezs, Ind. Eng. Chem. Fundam. 14 (1975) 248.Google Scholar
  12. [12]
    A.G. Meyra, V.A. Kuz, G.J. Zarragoicoechea, Fluid Phase Equilibria 218 (2004) 205.Google Scholar
  13. [13]
    E.H.P. Cordfunke, R.J.M. Konings, Thermochemical Data for Reactor Materials and Fission Products, North Holland Elsevier Science Pub. Co. Inc., New York, 1990.Google Scholar
  14. [14]
    E.A. Guggenheim, J. Chem. Phys. 13 (1945) 235.Google Scholar
  15. [15]
    J. Stephan, J. Ann. Phys. 29 (1988) 655.Google Scholar
  16. [16]
    R. Defay, I. Prigogine, A. Bellemans, Surface Tension and Adsorption, Longmans Green, London, 1966.Google Scholar
  17. [17]
    E. Eustathopoulos, B. Drevet, E. Ricci, J. Crystal Growth 191 (1998) 268.Google Scholar
  18. [18]
    B.J. Keene, Int. Mater. Rev. 38 (1993) 157.Google Scholar
  19. [19]
    J.H. Goldman, J. Nucl. Mater. 125 (1984) 86.Google Scholar
  20. [20]
    J. Bohdansky, H.J.J. Shins, J. Inorg. Nucl. Chem. 29 (1967) 2172.Google Scholar
  21. [21]
    A. Tegetmeier, A. Cröll, K.W. Benz, J. Crystal Growth 141 (1994) 451.Google Scholar
  22. [22]
    D.L. Beke, G. Erdelyi, F.J. Kedves, J. Phys. Chem. Solids 42 (1981) 163.Google Scholar
  23. [23]
    R.P. Chhabra, High Temp.-High Press 23 (1991) 569.Google Scholar
  24. [24]
    M.H. Ghatee, High Temp. -High Press 26 (1994) 507.Google Scholar
  25. [25]
    R. M. Digilov, Int. J. Thermophys. 23 (2002) 1381.Google Scholar
  26. [26]
    R.W. Oshe, Handbook of Thermodynamic and Transport Properties of Alkali Metals, Blackwell Scientific Publications Ltd., Oxford, UK, 1985.Google Scholar
  27. [27]
    R.E. Berg, M.R. Moldover, S. Rabinovich, A. Voronel, J. Phys. (F): Met. Phys. 17 (1987) 1861.Google Scholar
  28. [28]
    PI. Bystrov, D.N. Kagan, G.A. Krechetova, E.E. Shpil’rain, Liquid-Metal Coolants for Heat Pipes and Power Plants, V.A. Kirillin, Hemisphere Pub. Corp., New York, 1990.Google Scholar
  29. [29]
    M.Z. Faizullin, Fluid Phase Equilib. 211 (2003) 75.Google Scholar
  30. [30]
    M.H. Ghatee, Fluid Phase Equilib. 170 (2000) 1.Google Scholar
  31. [31]
    A.V. Grosse, J. Inorg. Chem. 26 (1964) 1349.Google Scholar
  32. [32]
    H.A. Papazian, Scr. Metall. 18 (1984) 1401.Google Scholar
  33. [33]
    H.A. Papazian, High Temp. Sci. 18 (1984) 19.Google Scholar
  34. [34]
    B.C. Allen, in Liquid Metals, Chemistry and Physics, Marcel Dekker, New York, 1972.Google Scholar
  35. [35]
    L.S. Bartell, J. Phys. Chem. 99 (1995) 1080.Google Scholar
  36. [36]
    R.W. Ohse, J.F. Babelot, J. Magill, M. Tetenbaum, J. Pure Appl. Chem. 57 (1985) 1407.Google Scholar
  37. [37]
    W.M. Shyu, K.S. Singwi, M.P. Tosi, Phys. Rev. B 3 (1971) 237Google Scholar

Copyright information

© Iranian Chemical Society 2006

Authors and Affiliations

  • M. H. Mousazadeh
    • 1
  • A. Khanchi
    • 1
  • M. Ghanadi Marageh
    • 1
  1. 1.AEOI, JIH Research LaboratoryTehranIran

Personalised recommendations