Advertisement

Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate

  • Erden Banoglu
  • Gautam G. Jha
  • Roberta S. King
Article

Summary

The aim of our study was to determine which microsomal cytochrome P450 isozyme(s) were responsible for the microsomal oxidation of indole to indoxyl, an important intermediate in the information of the uremic toxin indoxyl sulfate. Indole was incubated together with an NADPH — generating system and rat liver microsomes. Formation of indigo, an auto-oxidation product of indoxyl, was used to determine the indole-3-hydroxylation activity. Apparent Km and Vmax values of 0.85 mM and 1152 pmol min−1 mg−1 were calculated for the formation of indoxyl from indole using rat liver microsomes. The effects of various potential inducers and inhibitors on the metabolism of indole to indoxyl by rat liver microsomes were studied to elucidate the enzymes responsible for metabolism. Studies with general and isozyme-specific P450 inhibitors demostrated that P450 enzymes and not FMO are responsible for the formation of indoxyl. In the induction studies, rate of indoxyl formation in the microsomes from untreated vs induced rats correlated nearly exactly with the CYP2E1 activity (4-nitrophenol 2-hydroxylation). These results suggests that CYP2E1 is the major isoform for the microsomal oxidation of indole to indoxyl.

Keywords

Indole indoxyl cytochrome P450 oxidation metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryan G.T. (1971): The role of urinary tryptophan metabolites in the etiology of bladder cancer. Am. J. Clin. Nutt., 24, 841–847.Google Scholar
  2. 2.
    Dunning W.F., Curtis M.R. (1958): The role of indole in incidence of 2-acetylaminofluorene-induced bladder cancer in rats. Proc. Soc. Exp. Biol. Med., 99, 91–95.PubMedGoogle Scholar
  3. 3.
    Oyasu R., Kitajima T., Hopp M.L., Sumie H. (1972): Enhancement of urinary bladder tumorigenesis in hamsters by coadministration of 2-acetylaminofluorene and indole. Cancer Res., 32, 2027–2033.PubMedGoogle Scholar
  4. 4.
    Sims J., Renwick A.G. (1983): The effects of saccharin on the metabolism of dietary tryptophan to indole, a known cocarcinogen for the urinary bladder of the rat. Toxicol. Appl. Pharmacol., 67, 132–151.PubMedCrossRefGoogle Scholar
  5. 5.
    Lawrie C.A., Renwick A.G., Sims J. (1985): The urinary excretion of bacterial amino-acid metabolites by rats fed saccharin in the diet. Food Chem. Toxicol., 23, 445–450.PubMedCrossRefGoogle Scholar
  6. 6.
    Niwa T., Nomura T., Sugiyama S., Miyazaki T., Tsukushi S., Tsutsui S. (1997): The protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients. Kidney Int. Suppl., 62, S23-S28.PubMedGoogle Scholar
  7. 7.
    Niwa T., Aoyama I., Takayama F., Tsukushi S., Miyazaki T., Owada A., Shiigai T. (1999): Urinary indoxyl sulfate is a clinical factor that affects the progression of renal failure. Miner Electrolyte Metab., 25, 118–122.PubMedCrossRefGoogle Scholar
  8. 8.
    Miyazaki T., Aoyama I., Ise M., Seo H., Niwa T. (2000): An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-betal in uraemic rat kidneys. Nephrol. Dial. Transplant, 15, 1773–1781.PubMedCrossRefGoogle Scholar
  9. 9.
    Stanfel L.A., Gulyassy P.F., Jarrard E.A. (1986): Determination of indoxyl sulfate in plasma of patients with renal failure by use of ionpairing liquid chromatography. Clin. Chem., 32, 938–942.PubMedGoogle Scholar
  10. 10.
    Niwa T., Ise M., Miyazaki T. (1994): Progression of glomerular sclerosis in experimental uremic rats by administration of indole, a precursor of indoxyl sulfate. Am. J. Nephrol., 14, 207–212.PubMedCrossRefGoogle Scholar
  11. 11.
    Parkinson A. (1996): Biotransformation of xenobiotics. In: Klaasen C.D. (ed). Casarett and Doull's Toxicology. New York: McGraw-Hill, 113–186.Google Scholar
  12. 12.
    Wong L.L. (1998): Cytochrome P450 monooxygenases. Curr. Opin. Chem. Biol., 2, 263–268.PubMedCrossRefGoogle Scholar
  13. 13.
    Guengerich F.P. (1991): Oxidation of toxic and carcinogenic chemicals by human cytochrome P450 enzymes. Chem. Res. Toxicol., 4, 391–407.PubMedCrossRefGoogle Scholar
  14. 14.
    Lieber C.S. (1997): Cytochrome P4502E1. Its physiological and pathological role. Physiol. Rev., 77, 517–544.PubMedGoogle Scholar
  15. 15.
    Gillam E.M.J., Aguinaldo A.M.A., Notley L.M., Kim D., Mundkowski R.G., Volkov A.A., Arnold F.H., Soucek P., DeVoss J.J., Guengerich F.P. (1999): Formation of indigo by recombinant mammalian cytochrome P450. Biochem. Biophys. Res. Commun., 265, 469–472.PubMedCrossRefGoogle Scholar
  16. 16.
    Gillam E.M.J., Notley L.M., Cai H., DeVoss J.J., Guengerich F.P. (2000): Oxidation of indole by cytochrome P450 enzymes. Biochem., 39, 13817–13824.CrossRefGoogle Scholar
  17. 17.
    Li Q.S., Schwaneberg U., Fischer P., Schmid R.D. (2000): Directed evolution of the fatty-acid hydroxlase P450 BM-3 into an indole-hydroxylating catalyst. Chemistry, 6, 1531–1535.PubMedCrossRefGoogle Scholar
  18. 18.
    Ingelman-Sundberg M., Oscarson M., MccLellan R.A. (1999): Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol. Sci., 20, 342–49.PubMedCrossRefGoogle Scholar
  19. 19.
    Turesky R.J., Lang N.P., Butler M.A., Teitel C.H., Kadlubar F.F. (1991): Metabolic activation of carcinogenic heterocyclic amines by human liver and colon. Carcinogenesis, 12, 1839–1845.PubMedCrossRefGoogle Scholar
  20. 20.
    Russel G.A., Kaupp G. (1969): Oxidation of carbanions. IV. Oxidation of indoxyl to indigo in basic solution. J. Am. Chem. Soc., 91, 3851–3859.CrossRefGoogle Scholar
  21. 21.
    Gorrod J.W., Patterson L.H. (1983): The metabolism of 4-substituted N-ethyl-N-methylanilines III. Effect of various potential inhibitors, activators and inducers on α-C- and N-oxidation. Xenobiotica, 13, 521–529.PubMedCrossRefGoogle Scholar
  22. 22.
    Tierney D.J., Haas A.L., Koop D.R. (1992): Degradation of cytochrome P-4502E1: Selective loss after labilization of the enzyme. Arch. Biochem. Biophys., 293, 9–16.PubMedCrossRefGoogle Scholar
  23. 23.
    Koop D.R. (1992): Hydroxylation of p-nitrophenol by rabbit ethanol-inducible cytochrome P450 isozyme 3a. Mol. Pharmacol., 29, 399–404.Google Scholar
  24. 24.
    Perella F.W. (1988): A practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal. Biochem., 174, 437–447.CrossRefGoogle Scholar
  25. 25.
    Grothusen A., Hardt J., Brautigam L., Lang D., Bocker R. (1996): A convenient method to discriminate between cytochrome P450 enzymes and flavin-containing monooxyenases in human liver microsomes. Arch. Toxicol., 71, 64–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen T.S., Dubois K.P. (1973): Studies on the enzyme inducing effect of polychlorinated biphenyls. Toxicol. Appl. Pharmacol., 26, 504–512.CrossRefGoogle Scholar
  27. 27.
    Okey A.B. (1990): Enzyme induction in the cytochrome P450 system. Pharmacol. Ther., 45, 241–298.PubMedCrossRefGoogle Scholar
  28. 28.
    Ryan D.E., Ramanathan L., Iida S., Thomas P.E., Haniu M., Shively J.E., Lieber C.S., Levin W. (1985): Characterization of a major form of rat hepatic microsomal cytochrome P450 induced by isoniazid. J. Biol. Chem., 260, 6385–6393.PubMedGoogle Scholar
  29. 29.
    Song B.J., Veech R.L., Saenger P. (1990): Cytochrome P450IIE1 is elevated in lymphocytes from poorly controlled insulin-dependent diabetics. J. Clin. Endocrinol. Metab., 71, 1036–1040.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang T., Shankar K., Ronis M.J., Mehendale H.M. (2000): Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. J. Pharmacol. Exp. Ther., 294, 473–479.PubMedGoogle Scholar
  31. 31.
    Yoo J.S.H., Yang C.S. (1985): Enzyme specificity in the metabolic activation of N-nitrosodimethylamine to a mutagen for Chinese hamster V79 cells. Cancer Res., 45, 5569–5574.PubMedGoogle Scholar
  32. 32.
    Gonzales F.J. (1989): The modecular biology of P450s. Pharmacol. Rev., 40, 243–288.Google Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • Erden Banoglu
    • 1
  • Gautam G. Jha
    • 2
  • Roberta S. King
    • 2
  1. 1.Department of Pharmaceutical Chemistry, Faculty of PharmacyGazi UniversityAnkaraTurkey
  2. 2.Biomedical SciencesUniversity of Rhode IslandUSA

Personalised recommendations