Differential effect of cancer on the serum protein binding of mianserin and imipramine

  • I. Torres
  • E. Suárez
  • J. M. Rodríguez-Sasiain
  • C. Aguirre
  • R. Calvo


Protein binding of mianserin and imipramine in vitro was determined in sera from 10 patients with cancer and from 28 drug-free normal subjects. α1-acid glycoprotein (AAG) concentrations ranged from 0.91±0.04 g/l in control subject to 2.17±0.18 g/l in cancer patients. Albumin concentrations ranged from 55.80±1.68 g/l in control subjects to 39.71±4.40 g/l, respectively.

Serum samples containing concentrations of 100 ng/ml for mianserin and 500 ng/ml for imipramine were ultrafiltered and the free concentrations were measured with scintillation spectrophotometer. The mean free percentage of mianserin was significantly less in patients with cancer (8.70±0.29% in patients vs 14.30±0.50% in control subjectsP<0.001). A multiple regression analysis revealed a significant contribution of plasma AAG (r2=0.56,P<0.01), but not of albumin to the overall variability in mianserin binding. No correlation was observed between protein binding of imipramine and AAG concentrations in serum of cancer patients. No significant changes were observed for protein binding of imipramine in cancer patients as compared with control subjects.

Our results suggest that for antidepressant (AD) drugs, of which the binding depends on AAG, variability in protein binding could be expected in cancer patients. Thus, in cancer therapy, changes in analgesic doses could be necessary with this kind of antidepressant drug.


Protein binding antidepressant cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reichenberg K., Gaillard-Plaza G., Montrastruc J.L. (1985): Influence of naloxone on the antinoceptive effect of some antidepressant drugs. Arch. Int. Pharmacol., 275, 78–85.Google Scholar
  2. 2.
    Schug S.A., Dunlop R., Zech D. (1992): Pharmacological management of cancer pain. Drugs, 43, 44–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Kvindesal B., Molin J., Froland A., Gram L.F. (1984): Imipramine treatment of painful diabetic neuropathy. JAMA, 251, 1727–1730.CrossRefGoogle Scholar
  4. 4.
    Kristensen C.B. (1983): Imipramine serum protein binding in healthy subjects. Clin. Pharmacol. Ther., 34, 689–694.PubMedCrossRefGoogle Scholar
  5. 5.
    Javaid J.I., Hendricks K., Davis J.M. (1983): α1-acid glycoprotein involvement in high affinity binding of tricyclic antidepressants to human plasma. Biochem. Pharmacol., 32, 1149–1153.PubMedCrossRefGoogle Scholar
  6. 6.
    Brinkschulte M., Breyer-Pfaff U. (1980): The contribution of alpha-1-acid glycoprotein, lipoproteins and albumin to the plasma binding of perazine, amitriptyline and nortriptyline in healthy man. Naunyn Schmiedeberg's Arch. Pharmacol., 314, 61–66.CrossRefGoogle Scholar
  7. 7.
    Eap C.B., Cuendet C., Baumann P. (1988): Binding of amitriptyline to alpha-1-acid glycoprotein and its variants. J. Pharm. Pharmacol., 40, 767–770.PubMedCrossRefGoogle Scholar
  8. 8.
    Tinguely D., Baumann P., Conti M., Jonzier-Perey M., Schöpf J. (1985): Interindividual differences in the binding of antidepressants to plasma proteins: the role of the variants of alpha-1-acid glycoprotein. Eur. J. Clin. Pharmacol., 27, 661–666.PubMedCrossRefGoogle Scholar
  9. 9.
    Jackson P. R., Tucker G. T., Woods H.F. (1982): Altered plasma drug binding in cancer: role of α1-acid glycoprotein and albumin. Clin. Pharmacol. Ther., 32, 295–302.PubMedCrossRefGoogle Scholar
  10. 10.
    Lipton A., Harvey H.A., Delong S., et al. (1979): Glycoprotein and human cancer. I. Circulating levels in cancer serum. Cancer, 43, 1766–1771.PubMedCrossRefGoogle Scholar
  11. 11.
    Routledge P.A. (1986): The plasma protein binding of basic drug. Br. J. Clin. Pharmacol., 22, 499–506.PubMedGoogle Scholar
  12. 12.
    Urien S., Albengres E., Pinquier J.L., Tilleman J.P. (1986): Role of alpha-1 acid glycoprotein, albumin and nonesterified fatty acids in serum binding of apazone and warfarin. Clin. Pharmacol. Ther., 39, 683–689.PubMedCrossRefGoogle Scholar
  13. 13.
    Du Souich P., Verges J., Erill S. (1993): Plasma protein binding and pharmacological response. Clin. Pharmacokinet., 24, 435–440.PubMedCrossRefGoogle Scholar
  14. 14.
    Abramson F.P. (1982): Methadone plasma protein binding: alterations in cancer and displacement from alpha-1-acid glycoprotein. Clin. Pharmacol. Ther., 32, 652–658.PubMedCrossRefGoogle Scholar
  15. 15.
    Echizen H., Saima S., Umeda M., Ishizaki T. (1987): Altered protein binding of disopyramide in plasma from patients with cancer and inflammatory disease. Ther. Drug Monit., 9, 272–278.PubMedCrossRefGoogle Scholar
  16. 16.
    Hrdina P.D., Lapierre Y.D., McIntosh B., Oyewumi L.K. (1983): Mianserin kinetics in depressed patients. Clin. Pharmacol. Ther., 33, 757–762.PubMedCrossRefGoogle Scholar
  17. 17.
    March C., Blanke R.V. (1985): Determination of free valproic acid concentrations using the Amicon Micropartition MPS-1 ultrafiltration system. Ther. Drug Monit., 7, 115–120.PubMedCrossRefGoogle Scholar
  18. 18.
    Scatchard G. (1949): The attraction of proteins for small metals and ions. Ann. NY Acad. Sci., 51, 660–672.CrossRefGoogle Scholar
  19. 19.
    Mancini G., Carbonara A.O., Heremans J.F. (1965): Inmunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry, 2, 235–238.PubMedCrossRefGoogle Scholar
  20. 20.
    Umstead G., Neumann K. (1990): Correlation of free phenytoin to serum albumin in cancer patients. Ann. Pharmacother., 24, 923–926.Google Scholar
  21. 21.
    Hollinshead A.C., Chuang C.Y. (1978): Evaluation of the relationships of prealbumin components in sera of patients with cancer. Natl. Cancer Ins. Monogr., 49, 187–192.Google Scholar
  22. 22.
    Weiss F., Morantz R.A., Bradley W.P., Chretien P.B. (1979): Serum acute-phase proteins and immunoglobulins in patients with gliomas. Cancer Res., 39, 542–544.PubMedGoogle Scholar
  23. 23.
    Abramson F.P., Jenkins J., Ostchega Y. (1982): Effects of cancer and its treatments on plasma concentration of alpha-1-acid glycoprotein and propanolol binding. Clin. Pharmacol. Ther., 32, 659–663.PubMedCrossRefGoogle Scholar
  24. 24.
    Shami M.R., Skellern G.G., Whiting B. (1984): Binding of3H-mianserin to bovine serum albumin, human serum albumin and α1-acid glycoprotein. J. Pharm. Pharmacol., 36, 16–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Baruzzi A., Contin M., Perucca E., Albani F., Riva R. (1986): Altered serum protein binding of carbamazepine in disease states associated with an increased alpha1-acid glycoprotein concentration. Eur. J. Clin. Pharmacol., 31, 85–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Urien S., Moran D., Renouard A., Rocher I., Tillement J.P., (1988): Variation in serum binding of tertatolol mediated by disease-induced modification of alpha-acid glycoprotein concentration. Eur. J. Clin. Pharmacol., 34, 381–385.PubMedCrossRefGoogle Scholar
  27. 27.
    Freilich D.I., Giardina E.G. (1984): Imipramine binding to alpha-1-acid-glycoprotein in normal subjects and cardiac patient. Clin. Pharmacol. Ther., 35, 670–674.PubMedCrossRefGoogle Scholar
  28. 28.
    Kristensen C.B. (1985): Plasma protein binding of imipramine in patients with rheumatoid arthritis. Eur. J. Clin. Pharmacol., 28, 693–696.PubMedCrossRefGoogle Scholar
  29. 29.
    Bloedow D.C., Hansbrough J.F., Hardin T., Simons M. (1986): Postburn serum drug binding and serum protein concentrations. J. Clin. Pharmacol., 26, 147–151.PubMedGoogle Scholar
  30. 30.
    Calvo R., Carlos R., Erill S. (1986): Differential effects of valproic acid on the serum protein binding of lorazepam and diazepam. Int. J. Clin. Pharm. Res., 6, 213–215.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • I. Torres
    • 1
  • E. Suárez
    • 1
  • J. M. Rodríguez-Sasiain
    • 1
  • C. Aguirre
    • 1
  • R. Calvo
    • 1
  1. 1.Department of Pharmacology, Faculty of MedicineUniversity of the Basque CountryVizcayaSpain

Personalised recommendations