, Volume 9, Issue 4, pp 13–23 | Cite as

Added-value protein products from whey

Extraction, fractionation, separation, purification
  • Paula Jauregi
  • Fisseha Tesfay Welderufael


The unique nutritional and functional properties of whey proteins together with the emerging new biological activities of these proteins and their peptides will lead to an increased demand for individual proteins and their hydrolysates. Therefore, efficient, selective and cost effective separations will be required. Developments in this area include, ion exchange chromatography, ion exchange membranes and affinity separations, which enable the fractionation of individual whey proteins with high biological activity such as, the minor protein lactoferrin. Although the majority of these technologies can be scaled-up and allow the production of individual proteins at kg scale, cost reduction remains a challenge. Here we review developments in the area of whey protein fractionation and advances in the production and purification of peptides from whey proteins.

Key words

whey proteins chromatography membranes ion exchange bioactive peptides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T Afferstsholt, S Palmer (2009) Whey proteins: continued market growth despite economic crisis NUTRAfoods 8 56–58Google Scholar
  2. 2.
    GW Smithers (2008) Whey and whey proteins-From ‚gutter-to-gold’ Int Dairy J 18 695–704Google Scholar
  3. 3.
    D Chatterton, G Smithers, P Roupas, A Brodkorb (2006) Bioactivity of b-lactoglobulin and a-lactalbumin-Technological implications for processing Int Dairy J 16 1229–1240Google Scholar
  4. 4.
    K Marshall (2004) Therapeutic applications of whey protein Alt Med Rev 9 136–156Google Scholar
  5. 5.
    H Korhonen (2009) Bioactive whey proteins and peptides NUTRAfoods 8 9–22Google Scholar
  6. 6.
    M Etzel (2004) The emerging role of dairy proteins and bioactive peptides in nutrition and health Nutrition 996S-1002SGoogle Scholar
  7. 7.
    R Mehra, P Kelly (2006) Milk oligosaccharides: structural and technological aspects Int Dairy J 16 1334–1340Google Scholar
  8. 8.
    C Kunz, S Rudloff (2006) Health promoting aspects of milk oligosaccharides Int Dairy J 16 1341–1346Google Scholar
  9. 9.
    HW Modler (2000), Milk Processing, in: S Nakai, HW Modler Eds Food Proteins: processing applications, John Wiley and Sons, Inc, New YorkGoogle Scholar
  10. 10.
    E Fuda, D Bhatia, DL Pyle, P Jauregi (2005) Selective separation of beta-lactoglobulin from sweet whey using CGAs generated from the cationic surfactant CTAB Biotechnol Bioeng 90 532–542Google Scholar
  11. 11.
    H Korhonen, A Pihlanto (2007) Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum Curr Pharm Design 13 829–843Google Scholar
  12. 12.
    C Markus, B Olivier, G Panhuysen, J Van Der Gugten, M Alles, A Tuiten, H Westenberg, D Fekkes, H Koppeschaar, E de Haan (2000) The bovine protein alpha-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress Am J Clin Nutr 71 1536–1544Google Scholar
  13. 13.
    SF Gauthier, Y Pouliot, D Saint-Sauveur (2006) Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins Int Dairy J 16 1315–1323Google Scholar
  14. 14.
    WM Brück, SL Kelleher, GR Gibson, G Graverholt, BL Lönnerdal (2006) The effects of alpha-lactalbumin and glycomacropeptide on the association of CaCo-2 cells by enteropathogenic Escherichia coli, Salmonella typhimurium and Shigella flexneri FEMS Microbiol Lett 259 158–162Google Scholar
  15. 15.
    P Maillart, B Ribadeu-Dumas (1988) Preparation of b-Lactoglobulin and b-Lactoglobulin-free proteins from whey retentate by NaCl salting out at low pH J Food Sci 53 743–752Google Scholar
  16. 16.
    PM Tomasula, N Parris, RT Boswell, RO Moten (1998) Preparation of enriched fractions of a-lactalbumin and b-lactoglobulin from cheese whey using carbon dioxide J Food Process Preserv 22 463–476Google Scholar
  17. 17.
    T Kuwata, AM Pham, CY Ma, S Nakai (1985) Elimination of b Lactoglobulin-free proteins from whey to simulate human milk protein J Food Sci 50 605–609Google Scholar
  18. 18.
    E Casal, A Montilla, FJ Moreno, A Olano, N Corzo (2006) Use of chitosan for selective removal of b-Lactoglobulin from whey J Dairy Sci 89 1384–1389Google Scholar
  19. 19.
    DM Mulvihill, MP Ennis (2003) Functional milk proteins: production and utilization, in: PF Fox Ed Advanced dairy chemistry Kluwer Academic/Plenum PublishersGoogle Scholar
  20. 20.
    R Altra, G Vatai, E Bekassy-Molnar, A Balint (2005) Investigation of ultra- and nanofiltration for utlization of whey protein and lactose J Food Engin 67 325–332Google Scholar
  21. 21.
    JH Hanemaaijer (1985) Microfiltration in Whey Processing Desalination 53 143–155Google Scholar
  22. 22.
    GB Vandenberg, JH Hanemaaijer, CA Smolders (1987) Ultrafiltration of Protein Solutions - the Role of Protein Association in Rejection and Osmotic-Pressure J Memb Sci 31 307–320Google Scholar
  23. 23.
    HC Vanderhorst, JH Hanemaaijer (1990) Cross-Flow Microfiltration in the Food-Industry - State-of-the-Art Desalination 77 235–258Google Scholar
  24. 24.
    HM Farrell, R Jimenez-Flores, GT Bleck, EM Brown, JE Butler, LK et al (2004) Nomenclature of the proteins of cows’ milk-sixth revision J Dairy Sci 87 1641–1674Google Scholar
  25. 25.
    B Cheang, A Zydney (2003) Separation of a-Lactalbumin and b-Lactoglobulin using membrane ultrafiltration Biotechnol Bioeng 83 201–209Google Scholar
  26. 26.
    FT Sarfert, MR Etzel (1997) Mass transfer limitations in protein separations using ion-exchange membranes J Chromatogr A 794 3–20Google Scholar
  27. 27.
    S Goodall, AS Grandison, P Jauregi, J Price (2008) Selective separation of the major whey proteins using ion exchange membranes J Dairy Sci 91 1–10Google Scholar
  28. 28.
    CS Rao (2001) Purification of large proteins using ion-exchange membranes Process Biochem 37 247–256Google Scholar
  29. 29.
    MRE Ladisch (2001) Bioseparations engineering:principles, practice and economics, John Wiley & Sons LtdGoogle Scholar
  30. 30.
    WF Weinbrenner, MR Etzel (1994) Competitive adsorption of alactalbumin and bovine serum albumin to a sulfopropyl ionexchange membrane J Chromatogr A 662 414–419Google Scholar
  31. 31.
    DK Roper, EN (1995) Lightfoot, Separation of biomolecules using adsorptive membranes J Chromatogr A 702 3–26Google Scholar
  32. 32.
    C Chiu, MR Etzel (1997) Fractionation of lactoperoxidase and lactoferrin from bovine whey using a cation exchange membrane J Food Sci 62 996–1000Google Scholar
  33. 33.
    R Ulber, K Plate, T Weiss, W Demmer, H Buchholz, T Scheper (2001) Downstream processing of bovine lactoferrin from sweet whey Acta Biotechnol 21 27–34Google Scholar
  34. 34.
    L Pedersen, J Mollerup, E Hansen, A Jungbauer (2003) Whey proteins as a model system for chromatographic separation of proteins Journal of Chromatography B-Analytical Technologies in the Biomed Life Sci 790 161–173Google Scholar
  35. 35.
    S Doultani, KN Turhan, MR Etzel (2004) Fractionation of proteins from whey using cation exchange chromatography Proc Biochem 39 1737–1743Google Scholar
  36. 36.
    A Heeboll-Nielsen, SFL Justesen, ORT Thomas (2004) Fractionation of whey proteins with high-capacity superparamagnetic ionexchangers J Biotechnol 113 47–262Google Scholar
  37. 37.
    Q Lan, A Bassi, J Zhu, A Margaritis (2002) Continuous protein recovery from whey using liquid-solid circulating fluidized bed ionexchange extraction Biotechnol Bioengin 78 157–163Google Scholar
  38. 38.
    R Rossano, A D’Elia, P Riccio (2001), One-step separation from lactose: recovery and purification of major cheese-whey proteins by hydroxyapatite-a flexible procedure suitable for small and medium scale preparations Prot Expr Purif 21 165–169Google Scholar
  39. 39.
    P Jauregi, J Varley (1998) Colloidal gas aphrons: A novel approach to protein recovery Biotechnol Bioengin 59 471–481Google Scholar
  40. 40.
    E Fuda, P Jauregi, DL Pyle (2004) Recovery of lactoferrin and lactoperoxidase from sweet whey using colloidal gas aphrons CGAs generated from an anionic surfactant, AOT Biotechnol Prog 20 514–525Google Scholar
  41. 41.
    M Dermiki, MH Gordon, P Jauregi (2008) The use of colloidal gas aphrons as novel downstream processing for the recovery of astaxanthin from cells of Phaffia rhodozyma J Chem Technol Biotechnol 83 174–182Google Scholar
  42. 42.
    R Wissmann-Alves, AA Ulson de Souza, SM Ulson de Souza, P Jauregi (2006) Recovery of norbixin from a raw extraction solution of annatto pigments using colloidal gas aphrons CGAs Separ Purif Technol 48 208–213Google Scholar
  43. 43.
    G Spigno, M Dermiki, C Pastori, F Casanova, P Jauregi (2010) Recovery of gallic acid with colloidal gas aphrons generated from a cationic surfactant Separ Purif Technol 71 56–62Google Scholar
  44. 44.
    J Noel, P Ales, R Tanner (2002) Foam fractionation of a dilute solution of bovine lactoferrin App Biochem Biotechnol 98–100 395–402Google Scholar
  45. 45.
    JGLF Alves, LDA Chumpitaz, LHM da Silva, TT Franco, AJA Meirelles (2000) Partitioning of whey proteins, bovine serum albumin and porcine insulin in aqueous two-phase systems J Chromatogr B-Analyt Technol Biomed Life Sci 743 235–239Google Scholar
  46. 46.
    MA Manso, R Lopez-Fandiño (2004) k-Casein macropeptides from cheese whey: physicochemical, biological, nutritional, and technological features for possible uses Food Rev Int 20 329–355Google Scholar
  47. 47.
    EP Brody (2000) Biological activities of bovine glycomacropeptide Br J Nutr 84 S39–S46Google Scholar
  48. 48.
    H Korhonen, A Pihlanto (2006) Bioactive peptides: production and functionality Int Dairy J 16 945–960Google Scholar
  49. 49.
    S Thoma-Worringer, C Lopez-Fandino R (2006) Health effects and technological features of caseinomacropeptide Int Dairy J 16 1324–1333Google Scholar
  50. 50.
    S Van Calcar, E MacLeod, S Gleason, M Etzel, M Clayton, J Wolff, D Ney (2009) Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids Am J Clin Nutr 89 1068–1077Google Scholar
  51. 51.
    FJ Moreno, R Lopez-Fandiño (2002) Characterisation and functional properties of lactosyl caseinomacropeptide conjugates J Agr Food Chem 50 5179–5184Google Scholar
  52. 52.
    A Tolkach, U Kulozik (2005) Fractionation of whey proteins and caseinomacropeptide by means of enzymatic crosslinking and membrane separation techniques J Food Eng 67 13–20Google Scholar
  53. 53.
    Y Kawasaki, M Kawakami, M Tanimoto, S Dosako, A Tomizawa, M Kotake et al (1996) pH-Dependent molecular weight changes in k-casein glycomacropeptide and its preparation by ultrafiltration Milchwissenschaft 48 91–196Google Scholar
  54. 54.
    AB Martin-Diana, MJFJ Fontecha (2002) Isolation and characterization of caseinomacropeptide from bovine, ovine, and caprine cheese whey Eur Food Res Technol 214 282–286Google Scholar
  55. 55.
    JM Steijns, ACM Hooijdonk (2000) Occurrence, structure, biochemical properties and technological characteristics of lactoferrin Br J Nutr 84 S11–S17Google Scholar
  56. 56.
    K Plate, S Beutel, H Buchholz, W Demmer et al (2006) Isolation of bovine lactoferrin, lactoperoxidase and enzymatically prepared lactoferricin from proteolytic digestion of bovine lactoferrin using adsorptive membrane chromatography J Chromatogr A 1117 81–86Google Scholar
  57. 57.
    KD Kussendrager, v Hooijdonk (2000) Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications Br J Nutr 84 2000 S19–S25Google Scholar
  58. 58.
    ED Weinberg (2007), Antibiotic properties and applications of lactoferrin Curr Pharm Des 13 801–811Google Scholar
  59. 59.
    DA Dionysius, JM Milne (1996) Antibacterial peptides of bovine lactoferrin: purification and characterization J Dairy Sci 80 667–674Google Scholar
  60. 60.
    H Tsuda, Sekine, K, Nakamura, J, Takasuka et al (1998) Inhibition of azoxymethane initiated colon tumour and aberant crypt foci development by bovine lactoferrin administration in F344 rats Adv Exp Med Biol 443 273–284Google Scholar
  61. 61.
    PW Parodi (2007) A role for milk proteins and their peptides in cancer prevention Curr Pharm Des 13 813–828Google Scholar
  62. 62.
    DF Elgar, M Pritchard, JS Ayers, GB Bhaskar, KP Palmano (2003) Process for separation of whey proteins using a novel anion exchanger US Patent 7018665Google Scholar
  63. 63.
    CJ Fee, Chand A (2006) Capture of lactoferrin and lactoperoxidase from raw whole milk by cation exchange chromatography Sep Pur Technol 48 143–149Google Scholar
  64. 64.
    KD Kussendrager, MGC Kivits, A Verver (1997) Process for isolating lactoferrin and lactoperoxidase from milk and milk products, and products obtained by such process US Patent 5596082Google Scholar
  65. 65.
    X Ye, S Yoshida, TB Ng (2000) Isolation of lactoperoxidasee, lactoferrin, alpha-lactalbumin, beta-lactogloublin b and beta-lactoglobulin a from bovine rennet whey using ion exchange chromatography Int J Biochem Cell Biol 32 1143–1150Google Scholar
  66. 66.
    R Hahn, PM Schulz, C Schaupp, A Jungbauer (1998) Bovine whey fractionation based on cation-exchange chromatography J Chromatogr A 795 277–287Google Scholar
  67. 67.
    SA Al-Mashikhi, E Li-Chan, S Nakai (1998) Separation of immunogloubulins and lactoferrin from cheese whey by chelating chromatography J Dairy Sci 71 1747–1755Google Scholar
  68. 68.
    H Kawakami, H Shinmoto, SI Dosako, Y Sogo (1987) One-step isolation of lactoferrin using immobilised monoclonal antibodies J Dairy Sci 70 752–759Google Scholar
  69. 69.
    G Brisson, M Britten, Y Pouliot (2007) Electrically-enhanced crossflow microfiltration for separation of lactoferrin from whey protein mixtures J Membr Sci 297 206–216Google Scholar
  70. 70.
    P Pifferi, A Villalonga (2000) Method for the purification of lactoperoxidases EP1043393 Google Scholar
  71. 71.
    J Xu, L Qin, P Wang, W Li, C Chang (2008) Effect of milk tripeptides on blood pressure: A meta-analysis of randomised controlled trials Nutrition 24 933–940CrossRefGoogle Scholar
  72. 72.
    A Dryakova, A Pihlanto, P Marnila, L Curda, HJT Korhonen (2010) Antioxidant properties of why protein hydrolysates as measured by three methods Eur Food Res Technol 230 865–874Google Scholar
  73. 73.
    A Pellegrini, C Dettling, U Thomas, P Hunziker (2001) Isolation and characterization of four bactericidal domains in the bovine beta-lactoglobulin Biochim Biophys Acta BBA — General Subjects 1526 131–140Google Scholar
  74. 74.
    HA Elbarbary, AM Abdou, EY Park, Y Nakamura, HA Mohamed, K Sato (2010) Novel antibacterial lactoferrin peptides generated by rennet digestion and autofocusing technique Int Dairy J 20 646–651Google Scholar
  75. 75.
    J Léonil, D Mollé (1990) Liberation of tryptic fragments from caseinmacropeptide of bovine ϰ-casein involved in platelet function Biochem J 271 247–252Google Scholar
  76. 76.
    Z-Y Qian, P Joll~s, D Migliore-Samour, Fo Schoentgen, A-M Fiat (1995) Sheep K-casein peptides inhibit platelet aggregation Biochim Biophys Acta 1244 411–417Google Scholar
  77. 77.
    P Antila, I Paakkari, A Järvinen, MJ Mattila, M Laukkanen, A Pihlanto-Leppälä, P Mäntsälä, J Hellman (1991) Opioid peptides derived from in-vitro proteolysis of bovine whey proteins Int Dairy J 1 215–229Google Scholar
  78. 78.
    B Hernandez-Ledesma, A Davalos, B Bartolome, L Amigo (2005) Preparation of antioxidant enzymatic hydrolysates from alpha lactalbumin and beta lactoglobulin Identification of active peptides by HPLC-MS/MS J Agr Food Chem 53 588–593Google Scholar
  79. 79.
    M Salami, AA Moosavi-Movahedi, MR Ehsani, R Yousefi, T Haertle, J-M Chobert, SH Razavi, R Henrich, S Balalaie, SA Ebadi, S Pourtakdoost, A Niasari-Naslaji (2010) Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited hydrolysis J Agr Food Chem 58 3297–3302Google Scholar
  80. 80.
    S Didelot, S Bordenave-Juchereau, E Rosenfeld, I Fruitier-Arnaudin, J-M Piot, F Sannier (2006) Preparation of angiotensin-I-converting enzyme inhibitory hydrolysates from unsupplemented caprine whey fermentation by various cheese microflora Int Dairy J 16 976–983Google Scholar
  81. 81.
    D Pan, Y Guo (2010) Optimization of sour milk fermentation for the production of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolysate Int Dairy J 20 472–479Google Scholar
  82. 82.
    MM Mullally, H Meisel, RJ FitzGerald (1997) Angiotensin-Iconverting enzyme inhibitory activities of gastric and pancreatic proteinase digests of whey proteins Int Dairy J 7 299–303Google Scholar
  83. 83.
    SC Cheison, Z Wang, S-Y Xu (2007) Multivariate strategy in screening of enzymes to be used for whey protein hydrolysis in an enzymatic membrane reactor Int Dairy J 17 393–402Google Scholar
  84. 84.
    S Kapila, LN Jabadolia, AK Dang, R Kapila, S Arora (2009) Augmentation of biofunctional properties of whey protein on fermentation with Lactobacillus helveticus Milchwissenschaft 64 245–249Google Scholar
  85. 85.
    A Mannheim, M Cheryan (1990) Continuous hydrolysis of milk protein in a membrane reactor J Food Biosci 55 381–390Google Scholar
  86. 86.
    J Lasch, R Koelsch, K Kretschmer (1987) Continuous production of protein hydrolysates in immobilized enzyme reactors Acta Biol 7 227–235Google Scholar
  87. 87.
    S Butylina, S Luque, M Nyström (2006) Fractionation of whey-derived peptides using a combination of ultrafiltration and nanofiltration J Membr Sci 280 418–426Google Scholar
  88. 88.
    E Darnon, E Morin, MP Belleville, GM Rios (2003) Ultrafiltration within downstream processing: some process design considerations Chem Engin Process 42 299–309Google Scholar
  89. 89.
    G Daufin, JP Escudier, H Carrere, S Berot, L Fillaudeau, M Decloux (2001) Recent and emerging applications of membrane processes in the food and dairy industry Food Bioprod Process 79 89–102Google Scholar
  90. 90.
    A Guadix, F Camacho, EM Guadix (2006) Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor J Food Eng 72 398–405Google Scholar
  91. 91.
    X Peng, B Kong, X Xia, U Liu (2010) Reduced and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase Int Dairy J 20 360–365Google Scholar
  92. 92.
    J Otte, SM Shalaby, M Zakora, AH Pripp, SA El-Shabrawy (2007) Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: Effect of substrate, enzyme and time of hydrolysis Int Dairy J 17 488–503Google Scholar
  93. 93.
    P Ortiz-Chao, JA Gómez-Ruiz, RA Rastall, D Mills, C Cramer, P Pihlanto, H Korhonen, P Jauregi (2009) Production of novel ACE inhibitory peptides from beta-lactoglobulin using Protease N Amano Int Dairy J 19 69–76Google Scholar
  94. 94.
    Y Nakamura, N Yamamoto, K Sakai, A Okubo, S Yamazaki, T Takano (1995) Purification and characterisation of angiotensin I-converting enzyme inhibitors from sour milk J Dairy Sci 78 777–783Google Scholar
  95. 95.
    F Welderufael, P Jauregi (2010) Development of an integrative process for the production of bioactive peptides from whey by proteolytic commercial mixtures Sep Sci Technol 45 1–9Google Scholar
  96. 96.
    MM Mullally, H Meisel, RJ FitzGerald (1997) Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine beta-lactoglobulin FEBS Lett 402 99–101Google Scholar
  97. 97.
    M-L Nurminen, M Sipola, H Kaarto, A Pihlanto-Leppälä, K Piilola, R Korpela, O Tossavainen et al (2000) alpha-Lactorphin lowers blood pressure measured by radiotelemetry in normotensive and spontaneously hypertensive rats Life Sci 66 1535–1543Google Scholar
  98. 98.
    B Hernández-Ledesma, M Ramos, I Recio, L Amigo (2006) Effect of ß-lactoglobulin hydrolysis with thermolysin under denaturing temperatures on the release of bioactive peptides J Chromatogr A 1116 31–37Google Scholar
  99. 99.
    A Pihlanto-Leppala, I Paakkari, M Rinta-Koski, P Antila (1997) Bioactive peptide derived from in vitro proteolysis of bovine beta lactoglobulin and its effect on smooth muscle J Dairy Res 64 149–155Google Scholar
  100. 100.
    I Recio, S Visser (1999) Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin: In situ enzymatic hydrolysis on an ion-exchange membrane J Chromatogr A 831 191–201Google Scholar
  101. 101.
    S Bordenave, F Sannier, G Ricart, J Piot (1999) Continuous hydrolysis of goat whey in an ultrafiltration reactor: generation of an alpha-lactorphin Prep Biochem Biotechnol 29 189–202Google Scholar
  102. 102.
    MA Belem, BF Gibbs, BH Lee (1999) Proposing sequences for peptides derived from whey fermentation with potential bioactive sites J Dairy Sci 82 486–493Google Scholar
  103. 103.
    V Vermeirssen, JV Camp, K Decroos et al (2003) The impact of fermentation and in vitro digestion on the formation of angiotensin-I-converting enzyme inhibitory activity from pea and whey protein J Dairy Sci 86 429–438Google Scholar
  104. 104.
    N Yamamoto, M Maeno, T Takano (1999) Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4 J Dairy Sci 82 1388–1393Google Scholar
  105. 105.
    H Korhone (2009) Milk-derived bioactive peptides: From science to applications-A Review J Funct Foods 177–187Google Scholar
  106. 106.
    A Pihlanto-Leppälä (2001) Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides — Review Trends in Food Sci Technol 11 347–356Google Scholar
  107. 107.
    A Pihlanto-Leppala, P Koskinen, K Piilola, T Tupasela, H Korhonen (2000) Angiotensin-I-converting enzyme inhibitory properties of whey protein digests concentration and characterization of active peptides J Dairy Res 67 53–64Google Scholar
  108. 108.
    REW Hancock (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials Lancet Infect Dis 1 156–164Google Scholar
  109. 109.
    KH Ellegård, C Gammelgård-Larsen, ES Sørensen, S Fedosov (1999) Process scale chromatographic isolation, characterization and identification of tryptic bioactive casein phosphopeptides Int Dairy J 9 639–652Google Scholar
  110. 110.
    S Bouhallab, G Henry, E Boschetti (1996) Separation of small cationic bioactive peptides by strong ion-exchange chromatography J Chromatogr A 724 137–145Google Scholar
  111. 111.
    M Ottens, J Houwing, SHV Hateren, TV Baalen, LAM van der Wielen (2006) Multi-Component Fractionation in SMB Chromatography for the Purification of Active Fractions from Protein Hydrolysates Food Bioprod Process 84 59–71Google Scholar
  112. 112.
    J-F Poulin, J Amiot, L Bazinet (2006) Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane J Biotechnol 123 314–328Google Scholar
  113. 113.
    J-F Poulin, J Amiot, L Bazinet (2007) Improved peptide fractionation by electrodialysis with ultrafiltration membrane: Influence of ultrafiltration membrane stacking and electrical field strength J Membr Sci 299 83–90Google Scholar
  114. 114.
    G Bargeman, J houwing, I Recio, G-H Koops (2002) Electromembrane filtration for the selective isolation of bioactive peptides from an alphas2-casein hydrolysate Biotechnol Bioengin 80 599–609Google Scholar
  115. 115.
    L Firdaous, P Dhulster, J Amiot, A Doyen, F Lutin, L-P Vézina, L Bazinet (2010) Investigation of the large-scale bioseparation of an antihypertensive peptide from alfalfa white protein hydrolysate by an electromembrane process J Membr Sci 355 175–181Google Scholar
  116. 116.
    L Firdaous, P Dhulster, J Amiot, A Gaudreau et al (2009) Concentration and selective separation of bioactive peptides from an alfalfa white protein hydrolysate by electrodialysis with ultrafiltration membranes J Membr Sci 329 60–67Google Scholar
  117. 117.
    LY Chen, GE Remondetto, M Subirade (2006) Food proteinbased materials as nutraceutical delivery systems Trends Food Sci Technol 17 272–283Google Scholar
  118. 118.
    M Murakami, H Tonouchi, R Takahashi, H Kitazawa, Y Kawai, H Negishi (2004), Structural analysis of a new anti-hypertensive peptide ß-lactosin B isolated from a commercial whey product J Dairy Sci 87 1967–1974Google Scholar
  119. 119.
    G-W Chen, J-S Tsai, B Sun Pan (2007) Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation Int Dairy J 17 641–647Google Scholar
  120. 120.
    A Abubakar, Saito, T Kitazawa, H Kawai, Y Itoh T (1998) Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion J Dairy Sci 81 3131–3138Google Scholar
  121. 121.
    R Scholthauer, Schollum, L M, Reid, J R, Harvey, S A, Carr, A J and Fanshawe, R L (2004) Bioactive whey protein hydrolysate, US patent 435/0681Google Scholar
  122. 122.
    M Mullally, H Meisel, RJ FitzGerald (1996) Synthetic Peptides Corresponding to ß-lactalbumin and ß-lactoglobulin Sequences with Angiotensin-I-converting Enzyme Inhibitory Activity Biol Chem Hoppe-Seyler 377 259–260Google Scholar
  123. 123.
    B Hernandez-Ledesma, I Recio, M Ramos, L Amigo (2002) Preparation of ovine and caprine beta-lactoglobulin hydrolysates with ACE-inhibitory activity Identification of active peptides from caprine beta-lactoglobulin hydrolysed with thermolysin Int Dairy J 12 805–812Google Scholar
  124. 124.
    RJ FitzGerald, BA Murray, DJ Walsh (2004) Hypotensive peptides from milk proteins J Nutr 134 980S-988SGoogle Scholar
  125. 125.
    LA Bradney, VV Vostrikov, DV Greathouse (2009) Investigation of Antimicrobial and Lipid Perturbing Properties of Lactoferrin Peptides Biophys J 96 457aGoogle Scholar
  126. 126.
    W Bellamy, M Takase, K Yamauchi, H Wakabashi, K Kawase, M Tomita (1992) Identification of the bacericidal domain of lactoferrin Biochim Biophys Acta-Prot Struct Mol Enzymol 1121 130–136Google Scholar
  127. 127.
    MIAvdG Kraan J, Nazmi K, Veerman ECI, Bolscher JGM Amerongen A (2004) Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin Peptides 25 177–183Google Scholar
  128. 128.
    MIAVd Kraan, K Nazmi, A Teeken, J Groenink, ECI Veerman, WVt Hof (2005) Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exhibits its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix facilitating N-terminal part Biol Chem 386 137–142Google Scholar
  129. 129.
    MM Enrique J F, Yuste M, Martínez M, Valléés S, Manzanares P,(2008) Inhibition of the wine spoilage yeast Dekkera bruxellensis by bovine lactoferrin-derived peptides International J Food Microbiol 127 229–234Google Scholar
  130. 130.
    MIAvdM Kraan J v, Nazmi K, Groenink J, Hof Wvt, Veerman ECI, Bolscher JGM, Amerongen AVN (2005) Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli Peptides 26 1537–1542Google Scholar
  131. 131.
    MM Miguel M A, López-Fandiño R, Alonso MJ, Salaices M (2007) Vascular effects and antihypertensive properties of ϰ-casein macropeptide Int Dairy J 17 1473–1477Google Scholar
  132. 132.
    H Chiba, M Yoshikawa (1986) Biologically functional peptides from food proteins: new opioid peptide from milk proteins, in: RE Feeney, JR Whitaker Eds Protein Tailoring for Food and Medical uses M Dekker New York, pp 123–153Google Scholar

Copyright information

© Springer and CEC Editore 2010

Authors and Affiliations

  • Paula Jauregi
    • 1
  • Fisseha Tesfay Welderufael
    • 1
  1. 1.Department of Food and Nutritional SciencesThe University of ReadingReadingUK

Personalised recommendations