Skip to main content
Log in

Developments in physical chemistry and basic principles

  • Review of Extraction & Processing
  • 1993 Review of Extraction & Processing
  • Published:
JOM Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H.J. Feng, J.J. Moore, and D.G. Wirth, “Application of Combustion Synthesis in the Production of Ceramic-Metal Composite Materials,” Processing and Fabrication of Advanced Materials for High Temperature Applications, ed. V.A. Ravi and T.S. Srivatsan (Warrendale, PA: TMS, 1992), pp. 3–21.

    Google Scholar 

  2. H.J. Feng, J.J. Moore, and D.G. Wirth, “Combustion Synthesis of TiB2-Al2O3-Al Composite Materials,” Developments in Ceramic and Metal-Matrix Composites, ed. K Upadhya (Warrendale, PA: TMS, 1991), pp. 219–239.

    Google Scholar 

  3. C.T. Ho, M.G. Lakshmikantha, and J.A. Sekhar, “Combustion Synthesis of Niobium Aluminide Intermetallics and Composites,” in Ref. 1, pp. 23–43.

    Google Scholar 

  4. H.P. Li, S. Bhaduri, and J.A. Sekhar, “Processing Ti-B-Cu Composites by Combustion Synthesis,” in Ref. 1, pp. 45–59.

    Google Scholar 

  5. O. Yamada and Y. Miyamoto, “Fabrication of Intermetallic Compounds by Advanced Thermite Type Combustion Synthesis Process,” J. Japan Inst. Metals, 56 (1992), pp. 938–942.

    CAS  Google Scholar 

  6. A. Hibino and R. Watanabe, “Reaction Mechanism of Combustion Synthesis of TiAl Intermetallic Compound,” J. Japan Inst. Metals, 55 (1991), pp. 1256–1262.

    CAS  Google Scholar 

  7. T.H. Okabe et al., “A Fundamental Study on the Preparation of Niobium Alummide Powders by Calciothermic Reduction,” Metall. Trans. B, 23B (1992), pp. 415–421.

    CAS  Google Scholar 

  8. A.F.A. Hoadley and M. Rappaz, “A Thermal Model of Laser Cladding by Powder Injection,” Metall. Trans. B, 23B (1992), pp. 631–642.

    CAS  Google Scholar 

  9. H.Y. Sohn and M.B. Aboukheshem, “Gas-Solid Reaction-Rate Enhancement by Pressure Cycling,” Metall. Trans. B, 23B (1992), pp. 285–294.

    CAS  Google Scholar 

  10. M.J. Proctor, R.J. Hawkins, and J.D. Smith, “Reduction of Iron Ore Pellets in CO-CO2-H2-H2O Mixtures,” Ironmaking Steelmaking, 19 (1992), pp. 194–200.

    CAS  Google Scholar 

  11. D. Sichen and S. Seetharaman, “Application of a Nonisothermal Thermogravimetric Method to the Kinetic Study of the Reduction of Metallic Oxides: Part I. A General Treatment and Its Application to the Reduction of the Oxides of Molybdenum by Hydrogen,” Metall. Trans. B, 23B (1992), pp. 317–324.

    CAS  Google Scholar 

  12. H.S. Sohn et al., “Non-Isothermal Oxidation of Copper Concentrate Particles Falling in a Vertical Tube,” Metall. Rev. MMIJ, 8 (1992), pp. 34–53.

    Google Scholar 

  13. J.P. Bonsack, “Entrained-Flow Chlorination of Ilmenite to Produce Titanium Tetrachloride and Metallic Iron,” Metall. Trans. B, 23B (1992), pp. 261–266.

    CAS  Google Scholar 

  14. R. Immele-Meziou et al., “Mössbauer Effect Study of Reduction of Ilmenite,” Trans. Inst. Min. Metall., 101 (1992), pp. C57–C59.

    CAS  Google Scholar 

  15. R.J. Munz and E.J. Chin, “The Carbothermic Reduction of Niobium Pentoxide and Pyrochlore in the Presence of Iron in a Transferred Arc Argon Plasma,” Can. Metall. Quart., 31 (1992), pp. 17–24.

    CAS  Google Scholar 

  16. B.B. Kale, A.R. Pande, and A.N. Gokam, “Studies in the Carbothermic Reduction of Phosphogypsum,” Metall. Trans. B, 23B (1992), pp. 567–572.

    CAS  Google Scholar 

  17. J. Langlais and R. Harris, “Strontium Extraction by Aluminothermic Reduction,” Can. Metall. Quart., 31 (1992), pp. 127–131.

    CAS  Google Scholar 

  18. O.K. Tokovoi et al., “Kinetics of Decarburization of Steel in an Oxygen Converter,” Russ. Metall., No. 3 (1991), pp. 21–24.

  19. R.J. Fruehan et al., “Rate of Decarburization of Fe-Csat Meltsby H2O at 1523 and 1873 K,” Metall. Trans. B, 23B (1992), pp. 45–51.

    CAS  Google Scholar 

  20. R.J. Fruehan, “Reaction Rates and Rate Limiting Factors in Iron Bath Smelting,” Proceedings of the Savard/Lee International Symposium on Bath Smelting, ed. J.K. Brimacombe et al. (Warrendale, PA: TMS, 1992), pp. 233–248.

    Google Scholar 

  21. D.-J. Min and R.J. Fruehan, “Rate of Reduction of FeO in Slag by Fe-C Drops,” Metall. Trans. B, 23B (1992), pp. 29–37.

    CAS  Google Scholar 

  22. M. Sheikhshab Bafghi, H. Kurimoto, and M. Sano, “Effect of Slag Foaming on the Reduction of Iron Oxide in Molten Slag by Graphite,” ISIJ International, 32 (1992), pp. 1084–1090.

    Google Scholar 

  23. B. Kulunk and R. Guthrie, “On the Kinetics of Removal of Sodium from Aluminum and Aluminum-Magnesium Alloys,” Light Metals 1992, ed. E.R. Cutshall (Warrendale, PA: TMS, 1991), pp. 963–975.

    Google Scholar 

  24. G.A. Irons and C. Celik, “Comparison of Iron Desulphurisation Using Calcium Carbide and Lime-Magnesium Mixtures,” Ironmaking Steelmaking, 19 (1992), pp. 136–144.

    CAS  Google Scholar 

  25. X. Chushao and T. Xin, “The Kinetics of Desulfurization of Hot Metal by CaO-CaF2 Based Fluxes,” ISIJ International, 32 (1992), pp. 1081–1083.

    Google Scholar 

  26. D.K. Belashchenko, A.B. Gritsenko, and O.I. Ostrovskii, “Computer Study of the Structure and Properties of Oxides of the CaO-SiO2 System,” Russ. Metall., No. 3 (1991), pp. 41–52.

  27. I.D. Sommerville and C.R. Masson, “Group Optical Basicities of Polymerized Anions in Slags,” Metall. Trans. B, 23B (1992), pp. 227–229.

    CAS  Google Scholar 

  28. H.H. Zhou, O. Herstad, and T. Ostvold, “Vapour Pressure Studies of and Complex Formation in NaF-AlF3 and Na3AlF6-MgF2 Melts,” in Ref. 23, pp. 511–520.

    Google Scholar 

  29. E.A. Kapustin, A.V. Sushchenko, and Yu.I. Kiryushkin, “Carbon-Oxygen Equilibrium in Liquid Iron,” Russ. Metall., No. 1 (1992), pp. 32–39.

  30. J.P. Hajra and M.G. Frohberg, “Integral Treatment for the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters,” Metall. Trans. B, 23B (1992), pp. 23–28.

    CAS  Google Scholar 

  31. T.H. Okabe, T. Oishi, and K. Ono, “Deoxidation of Titanium Aluminide by Ca-Al Alloy under Controlled Aluminum Activity,” Metall. Trans. B, 23B (1992), pp. 583–590.

    CAS  Google Scholar 

  32. D.-Y. Kim, G. Qi, and K. Itagaki, “Thermodynamic Consideration of Metallothermic Reduction Process for Direct Production of Nickel-Rare Earth Alloys,” Metall. Rev. MMIJ, 8 (1992), pp. 127–142.

    CAS  Google Scholar 

  33. N. Rajmohan and K.T. Jacob, “Use of CaCl2 as a Chlorinating Agent for Oxides—A Thermodynamic Analysis,” Minerals Metall. Processing, 9 (1992), pp. 141–145.

    CAS  Google Scholar 

  34. N. Rajmohan and K.T. Jacob, “Combined Sulphation-Chlorination Roasting of Oxides,” Minerals Eng., 5 (1992), pp. 235–243.

    CAS  Google Scholar 

  35. S. Tandon, R.D. Agrawal, and M.L. Kapoor, “Distribution Equilibria of Selenium between Liquid Copper and Na2O-B2O3-CaO Slags,” Mater. Trans. JIM, 33 (1992), pp. 57–59.

    CAS  Google Scholar 

  36. A.V. Tarasov et al., “Behavior of Cobalt when Processing Copper-Nickel Raw Material in Experimental Autogenous Smelting Furnaces,” Soviet J. Non-Ferrous Metals, 28 (12) (1987), pp. 23–25.

    Google Scholar 

  37. M.A. Reuter, T.J. Van Der Walt, and J.S.J. Van Deventer, “Modeling of Metal-Slag Equilibrium Processes Using Neural Nets,” Metall. Trans. B, 23B (1992), pp. 643–650.

    CAS  Google Scholar 

  38. F. Ishii and S. Ban-Ya, “Deoxidation Equilibrium of Silicon in Liquid Nickel and Nickel- Iron Alloys,” ISIJ International, 32 (1992), pp. 1091–1096.

    CAS  Google Scholar 

  39. F. Ishii and S. Ban-Ya, “Deoxidation Equilibrium of Silicon in Liquid Nickel-Chromium, Nickel-Molybdenum and Nickel-Tungsten Alloys,” ISIJ International, 32 (1992), pp. 1097–1101.

    CAS  Google Scholar 

  40. Z. Ma et al., “Dephosphorization of Mn-Based Alloys,” Steel Research, 63 (1992), pp. 112–119.

    CAS  Google Scholar 

  41. A.I. Zaitsev and B.M. Mogutnov, “Thermodynamics of Reducing Dephosphorization of Manganese and Manganese Ferroalloys,” ISIJ International, 32 (1992), pp. 1076–1080.

    CAS  Google Scholar 

  42. F.R.A. Jorgensen and B.J. Elliot, “Flash Furnace Reaction Shaft Evaluation through Simulation,” Proceedings, Extractive Metallurgy of Gold and Base Metals Conference (Melbourne, Australia: AusIMM, 1992), pp. 387–394.

    Google Scholar 

  43. F.R.A. Jorgensen et al., “Sampling Techniques for Flash Smelter Shafts,” Proceedings, Extractive Metallurgy of Gold and Base Metals Conference (Melbourne, Australia: AusIMM, 1992), pp. 395–400.

    Google Scholar 

  44. F. Oeters, “Fundamentals of In-Bath Smelting with Post-Combustion,” in Ref. 20, pp. 249–291.

    Google Scholar 

  45. C.Y. Cheng and F. Lawson, “The Kinetics of Leaching Chalcocite in Acidic Oxygenated Sulphate-Chloride Solutions,” Hydrometallurgy, 27 (1991), pp. 249–268.

    CAS  Google Scholar 

  46. C.Y. Cheng and F. Lawson, “The Kinetics of Leaching Covellite in Acidic Oxygenated Sulphate-Chloride Solutions,” Hydrometallurgy, 27 (1991), pp. 269–284.

    CAS  Google Scholar 

  47. K.A. Natarajan, “Electrobioleaching of Base Metal Sulfides,” Metall. Trans. B, 23B (1992), pp. 5–11.

    CAS  Google Scholar 

  48. K.A. Natarajan, “Bioleaching of Sulphides under Applied Potentials,” Hydrometallurgy, 29 (1992), pp. 161–172.

    CAS  Google Scholar 

  49. R.W. Bartlett, “Upgrading Copper Concentrate by Hydrothermally Converting Chalcopyrite to Digenite,” Metall. Trans. B, 23B (1992), pp. 241–284.

    CAS  Google Scholar 

  50. E.G. Baglin et al., “Solubilization of Manganese from Ores by Heterotrophic Micro-Organisms,” Hydrometallurgy, 29 (1992), pp. 131–144.

    CAS  Google Scholar 

  51. J.W. Van Put and P.M. De Koning, “Kinetics of and an Adsorption Model for the Dissolution of Synthetic WO3 in Aqueous Ammonia,” Hydrometallurgy, 28 (1992), pp. 353–366.

    Google Scholar 

  52. D. Filippou and G.P. Demopoulos, “A Reaction Kinetic Model for the Leaching of Industrial Zinc Ferrite Particulates in Sulphuric Acid Media,” Can. Metall. Quart., 31 (1992), pp. 41–54.

    CAS  Google Scholar 

  53. R. Chiarizia and E.P. Horwitz, “New Formulations for Iron Oxides Dissolution,” Hydrometallurgy, 27 (1991), pp. 339–360.

    CAS  Google Scholar 

  54. Z. Karagolge, M. Alkan, and M.M. Kocakerim, “Leaching Kinetics of Colemaniteby Aqueous EDTA Solutions,” Metall. Trans. B, 23B (1992), pp. 409–413.

    CAS  Google Scholar 

  55. J.W. Langhans Jr., K.P.V. Lei, and T.G. Carnahan, “Copper-Catalyzed Thiosulfate Leaching of Low-Grade Gold Ores,” Hydrometallurgy, 29 (1992), pp. 191–203.

    CAS  Google Scholar 

  56. B.Q. Li, “Nucleation Mechanism and Kinetics of Hydrogen Reduction of Nickel from Aqueous Solutions with Chromous Ions as Nucleating Agent,” Can. Metall. Quart., 31 (1992), pp. 249–258.

    CAS  Google Scholar 

  57. I. Halikia and P. Maraboutis, “Influence of Ion and Neutralization on the Rate of Iron Removal from Fe-Ni-Co Solutions,” Erzmetall, 45 (1992), pp. 156–163.

    CAS  Google Scholar 

  58. T. Nishimura and Y. Umetsu, “Separation of Cobalt and Nickel by Ozone Oxidation,” Hydrometallurgy, 30 (1992), pp. 483–497.

    CAS  Google Scholar 

  59. B. Pesic and T. Zhou, “Application of Ultrasound in Extractive Metallurgy: Sonochemical Extraction of Nickel,” Metall. Trans. B, 23B (1992), pp. 13–22.

    CAS  Google Scholar 

  60. R. Cheng, S. Hou, and D.F.A. Koch, “Kinetics Study on the Solvent Extraction of Yttrium Chloride with HEHEHP Using a Rotating Diffusion Cell,” Rare Earths: Resources, Science, Technology and Applications, ed. R.G. Bautista and N. Jackson (Warrendale, PA: TMS, 1991), pp. 283–295.

    Google Scholar 

  61. S.D. Alexandratos and P.T. Kaiser, “Reaction Kinetics of Polystyrene-Based Phosphinic Acid Ion Exchange/Redox Resins with Metal Ions,” Solv. Extr. Ion Exch., 10 (1992), pp. 539–557.

    CAS  Google Scholar 

  62. N. Condamines and C. Musikas, “The Extraction by N-N-dialkylamides. II. Extraction of Actinide Ca lions,” Solv. Extr. Ion Exch., 10 (1992), pp. 69–100.

    CAS  Google Scholar 

  63. G.A. Kordosky et al., “Gold Solvent Extraction from Typical Cyanide Leach Solutions,” Hydrometallurgy, 30 (1989), pp. 291–305.

    Google Scholar 

  64. B.K. Tait, “The Extraction of Some Base Metal Ions by Cyanex 301, Cyanex 302 and Their Binary Extractant Mixtures with Aliquat 336,” Solv. Extr. Ion Exch., 10 (1992), pp. 799–809.

    CAS  Google Scholar 

  65. H. Bukowsky et al., “The Separation of Calcium and Magnesium from Lithium Chloride by Liquid-Liquid Extraction with Di(2-ethylhexyl) Phosphoric Acid,” Hydrometallurgy, 28 (1992), pp. 323–329.

    CAS  Google Scholar 

  66. T.S. Urbanski et al., “Liquid-Liquid Extraction of Cerium (III) and Lanthanum (III) from Aqueous Chloride Solutions by SME 529,” Hydrometallurgy, 28 (1992), pp. 1–12.

    CAS  Google Scholar 

  67. C. Abbruzzese et al., “Solvent Extraction of Lanthanum (III) and Cerium (III) from Aqueous Chloride Solutions by LIX 70,” Hydrometallurgy, 28 (1992), pp. 179–190.

    CAS  Google Scholar 

  68. Y.-H. Huang, C.-Y. Chen, and J.-F. Kuo, “Extraction Equilibria of Chromium (VI) from Hydrochloric Acid Solutions with Triisooctylamine in o-Xylene,” Hydrometallurgy, 28 (1992), pp. 297–307.

    CAS  Google Scholar 

  69. I. Mihaylov and P.A. Distin, “Gallium Solvent Extraction in Hydrometallurgy: An Overview,” Hydrometallurgy, 28 (1992), pp. 13–27.

    CAS  Google Scholar 

  70. M.A. Rodriguez, G. Cote, and D. Bauer, “Recovery of Indium (III) from Mixed Hydrochloric Acid-Sulphuric Acid Media by Solvent Extraction with Cyanex 301®,” Solv. Extr. Ion Exch., 10 (1992), pp. 811–827.

    Google Scholar 

  71. T. Sato and K. Sato, “Liquid-Liquid Extraction of Indium (III) from Aqueous Acid Solutions by Acid Organophosphorus Compounds,” Hydrometallurgy, 30 (1992), pp. 367–383.

    Google Scholar 

  72. P. Vanura and V. Jedináková-Krízová, “Extraction Systems Using Bis-1,2-Decarbollyl-Cobaltate and Polyoxonium Compounds for Lanthanum Separations,” Solv. Extr. Ion Exch., 10 (1992), pp. 847–859.

    CAS  Google Scholar 

  73. H. Ishii, F.Y. Heng, and T. Odashima, “Solvent Extraction of Some Tervalent Lanthanoids with 5-Bromo-, 3,5-Dibromo- and 5-Nitrosalicylaldehyde Acetohydrzones,” Solv. Extr. Ion Exch., 10 (1992), pp. 601–614.

    CAS  Google Scholar 

  74. J.M. Castresana, N. Etxebarria, and M.J. Zapatero, “Synergic Effect of 4-Methylpyridine in the Solvent Extraction of Ni(II) with the Active Component of LIX 54,” Solv. Extr. Ion Exch., 10 (1992), pp. 861–878.

    CAS  Google Scholar 

  75. K. Yamamoto, T. Fujibayashi, and S. Motomizu, “Liquid-Liquid Distribution of Ion Associates of Tetrahalogenopalladate(II) with Quaternary Ammonium Counter Ions,” Solv. Extr. Ion Exch., 10 (1992), pp. 459–476.

    CAS  Google Scholar 

  76. N. Takahashi and S. Asano, “Solvent Extraction of Rare Earth Cation by Using Acidic Extractant in the Presence of High Molecular Weight Amine,” J. Japan Inst. Metals, 55 (1991), pp. 1331–1337.

    CAS  Google Scholar 

  77. N. Takahashi and S. Asano, “Solvent Extraction of Rare Earth Cation by Using Acidic Extractant in the Presence of High Molecular Weight Amine Added with Weak Acid,” J. Japan Inst. Metals, 55 (1991), pp. 1338–1344.

    CAS  Google Scholar 

  78. W.K. Tolley, R.M. Izatt, and J.L. Oscarson, “Titanium Tetrachloride-Supercritical Carbon Dioxide Interaction: A Solvent Extraction and Thermodynamic Study,” Metall. Trans. B, 23B (1992), pp. 65–72.

    CAS  Google Scholar 

  79. K.C. Sole and J.B. Hiskey, “Solvent Extraction Characteristics of Thiosubstituted Organophosphinic Acid Extractants,” Hydrometallurgy, 30 (1992), pp. 345–365.

    CAS  Google Scholar 

  80. M.A. Olazabal et al., “Selective Extraction of Vanadium(V) from Solutions Containing Molybdenum(VI) by Ammonium Salts Dissolved in Toluene,” Solv. Extr. Ion Exch., 10 (1992), pp. 623–635.

    CAS  Google Scholar 

  81. H.L. Nekimken et al., “Separation Studies of Yttrium(III) and Lanthanide(III) Ions with 4-Benzoyl-2,4-Dihydro-5-Methyl-2-Phenyl-3H-Pyrazol-3-Thione and Trioctylphosphine Oxide Using a Robotic Extraction System,” Solv. Extr. Ion Exch., 10 (1992), pp. 419–429.

    CAS  Google Scholar 

  82. C. Caravaca and F.J. Alguacil, “Study of the ZnSO4-Cyanex 302 Extraction Equilibrium System,” Hydrometallurgy, 27 (1991), pp. 327–338.

    CAS  Google Scholar 

  83. R.F. Dalton, A. Burgess, and P.M. Quan, “Acorga ZNX50—A New Selective Reagent for the Solvent Extraction of Zinc from Chloride Leach Solutions,” Hydrometallurgy, 30 (1992), pp. 385–400.

    CAS  Google Scholar 

  84. M.W. Heininger and C.E. Meloan, “A Resin with Selectivity for the Removal and Recovery of Chromate from Contaminated Water,” Solv. Extr. Ion Exch., 10 (1992), pp. 159–171.

    CAS  Google Scholar 

  85. B. K-O. Leung and M.J. Hudson, “A Novel Weak Base Anion Exchange Resin Which Is Highly Selective for the Precious Metals over Base Metals,” Solv. Extr. Ion Exch., 10 (1992), pp. 173–190.

    CAS  Google Scholar 

  86. D. Desanti and P.A. Distin, “Hydrogen Reduction of Lead from Kelex 100 Loaded from Acetate Solution,” Solv. Extr. Ion Exch., 10 (1992), pp. 403–418.

    Google Scholar 

  87. Y. Maru, K. Wase, and S. Nishimura, “On the Stripping and Crystallization of Cobalt in the VA10-Kerosene Solution into Water under High Pressure CO2,” Metall. Rev. MMIJ, 8 (1992), pp. 99–114.

    Google Scholar 

  88. B. Pesic and V.C. Storhok, “Adsorption of Gold on Activated Carbon in Bromide Solutions,” Metall. Trans. B, 23B (1992), pp. 557–566.

    CAS  Google Scholar 

  89. A.S. Ibrado and D.W. Fuerstenau, “Effect of the Structure of Carbon Adsorbents on the Adsorption of Gold Cyanide,” Hydrometallurgy, 30 (1992), pp. 243–256.

    CAS  Google Scholar 

  90. L. Dajun and B. Guanghui, “The Kinetics of the Adsorption of Gold from Thiourea Solutions by Charcoal,” Hydrometallurgy, 28 (1992), pp. 95–109.

    Google Scholar 

  91. N.M. Vegter and R.F. Sandebergh, “The Kinetics of the Organic Elution of Gold Cyanide from Activated Granular Carbon Using an Aqueous Caustic Acetone Solution,” Hydrometallurgy, 28 (1992), pp. 205–222.

    CAS  Google Scholar 

  92. F.T. Awadalla and B. Pesic, “Biosorption of Cobalt with the AMT-Metal Removing Agent,” Hydrometallurgy, 28 (1992), pp. 65–80.

    CAS  Google Scholar 

  93. M.L. Apel, J.M. Barnes, and A.E. Torma, “Biosorption Kinetics of Metal Removal from Uranium Mill Tailing Effluents,” Mineral Bioprocessing, ed. R.W. Smith and M. Misra (Warrendale, PA: TMS, 1991), pp. 339–353.

    Google Scholar 

  94. R.G. Reddy, “Thermodynamics of Bacterial-Mineral Reactions,” Mineral Bioprocessing, ed. R.W. Smith and M. Misra (Warrendale, PA: TMS, 1991), pp. 453–468.

    Google Scholar 

  95. B.C. Paul, H.Y. Sohn, and M.K. McCarter, “Model for Ferric Sulfate Leaching of Copper Ores Containing a Variety of Sulfide Minerals: Part I. Modeling Uniform Size Ore Fragments,” Metall. Trans. B, 23B (1992), pp. 537–548.

    CAS  Google Scholar 

  96. B.C. Paul, H.Y. Sohn, and M.K. McCarter, “Model for Ferric Sulfate Leaching of Copper Ores Containing a Variety of Sulfide Minerals: Part II. Process Modeling of In Situ Operations,” Metall. Trans. B, 23B (1992), pp. 549–555.

    CAS  Google Scholar 

  97. V.G. Papangelakis and G.P. Demopoulos, “On the Attainment of Stable Autothermal Operation in Continuous Pressure LeachingReactors,” Hydrometallurgy, 29 (1992), pp. 297–318.

    Google Scholar 

  98. E.V. Gorbachev et al., “Physical Modeling of MHD Processes in Aluminum Electrolyzers,” Soviet J. Non-Ferrous Metals, 29 (1) (1988), p. 35–38.

    Google Scholar 

  99. H. Gudbrandsen, Å. Sterten, and R. Ødegard, “Cathodic Dissolution of Carbon in Cryolitic Melts,” in Ref. 23, pp. 521–528.

    Google Scholar 

  100. M. Sun and T.J. O’Keefe, “The Effect of Additives on the Nucleation and Growth of Copper onto Stainless Steel Cathodes,” Metall. Trans. B, 23B (1992), pp. 591–599.

    CAS  Google Scholar 

  101. S. Jin and E. Ghali, “Influence of Some Bath Additives on the Passivation of Copper Anodes in CuSO4-H2SO4 Electrolyte,” Can. Metall. Quart., 31 (1992), pp. 259–267.

    CAS  Google Scholar 

  102. F. Noguchi et al., “Behaviour of Anode Impurities in Copper Electrorefining,” Metall. Rev. MMIJ, 8 (1992), pp. 83–98.

    Google Scholar 

  103. D. Schab and K. Hein, “Problems of Anodic and Cathodic Mass Transfer in Copper Refining Electrolysis with Increased Current Density,” Can. Metall. Quart., 31 (1992), pp. 173–179.

    CAS  Google Scholar 

  104. H.Y. Sohn et al., “Fluid Flow and Mixing in Two-Phase Channel Reactors with Bottom Gas Injection,” in Ref. 20, pp. 377–412.

    Google Scholar 

  105. M. Sano and K. Mori, “Fundamentals of Gas Injection in Refining Processes,” in Ref. 20, pp. 465–492.

    Google Scholar 

  106. M. Iguchi et al., “Bubble Behavior in Hg-Air Vertical Bubbling Jets in a Cylindrical Vessel,” ISIJ International, 32 (1992), pp. 998–1005.

    CAS  Google Scholar 

  107. M. Iguchi and Z. Morita, “The Effective Viscosity and Effective Diffusivity of Bubbles in an Air-Water Vertical Bubbling Jet,” ISIJ International, 32 (1992), pp. 857–864.

    CAS  Google Scholar 

  108. Y. Xie and F. Oeters, “Numerical Calculations of the Gas Fraction and the Liquid Flow Velocity in Round Bubble Plumes,” Steel Research, 63 (1992), pp. 152–158.

    CAS  Google Scholar 

  109. Y. Xie and F. Oeters, “Experimental Studies on the Flow Velocity of Molten Metals in a Ladle Model at Centric Gas Blowing,” Steel Research, 63 (1992), pp. 93–104.

    CAS  Google Scholar 

  110. Y. Kishimoto, T. Sakuraya, and T. Fujii, “Recent Advances in Top and Bottom Blowing Converters Based on a Mathematical Model,” in Ref. 20, pp. 293–323.

    Google Scholar 

  111. M. Iguchi et al., “Heat Transfer between Bubbles and Liquid during Cold Gas Injection,” ISIJ International, 32 (1992), pp. 865–872.

    CAS  Google Scholar 

  112. G.G. Krishna Murthy and S.P. Mehrotra, “Mixing in Liquid Baths by Gas Injection,” Ironmaking Steelmaking, 19 (1992), pp. 377–389.

    Google Scholar 

  113. T. Wei and F. Oeters, “A Model Test for Emulsion in Gas-Stirred Ladles,” Steel Research, 63 (1992), pp. 60–68.

    CAS  Google Scholar 

  114. S. Chakraborty and Y. Sahai, “Effect of Slag Cover on Heat Loss and Liquid Steel Flow in Ladles before and during Teeming to a Continuous Casting Tundish,” Metall. Trans. B, 23B (1992), pp. 135–151.

    CAS  Google Scholar 

  115. S. Chakraborty and Y. Sahai, “Effect of Holding Time and Surface Cover in Ladles on Liquid Steel Flow in Continuous Casting Tundishes,” Metall. Trans. B, 23B (1992), pp. 153–167.

    CAS  Google Scholar 

  116. L. Xintian et al., “Flow Behaviour and Filtration of Steel Melt in Continuous Casting Tundish,” Ironmaking Steelmaking, 19 (1992), pp. 221–225.

    Google Scholar 

  117. J. Szekely et al., eds., Magnetohydrodynamics in Process Metallurgy (Warrendale, PA: TMS, 1991).

    Google Scholar 

  118. J. Szekely et al., “A Preliminary Study of Flow Control in Continuous Casting by the Combined Action of Electromagnetic Stirring and Clamping Forces,” in Ref. 117, pp. 231–237.

    Google Scholar 

  119. W.-S. Kim and J.-K. Yoon, “Numerical Prediction of Electromagnetically Driven Flow in ASEA-SKF Ladle Refining by Straight Induction Stirrer,” Iron making Steelmaking, 18 (1991), pp. 446–453.

    CAS  Google Scholar 

  120. P.A. Davidson, “Electromagnetic Stirring of Steel and Aluminum,” in Ref. 117, pp. 241–249.

    Google Scholar 

  121. E. Takeuchi et al., “Applied MHD in the Process of Continuous Casting,” in Ref. 117, pp. 189–202.

    Google Scholar 

  122. H. Tozawa et al., “Flow Control of Molten Steel in Continuous Casting Mold by Static Magnetic Field,” in Ref. 117, pp. 215–222.

    Google Scholar 

  123. H. Fukumoto et al., “Numerical Simulation of Meniscus Shape Considering Internal Flow Effects,” in Ref. 117, pp. 21–26.

    Google Scholar 

  124. J.W. Evans, D.P. Cook, and S. Nishioka, “Mathematical and Physical Modeling of Electromagnetically Supported Melts in Three Dimensions,” in Ref. 117, pp. 35–44.

    Google Scholar 

  125. J.R. Bhamidipati and N. El-Kaddah, “Calculation of Electromagnetic Field and Melt Shape in the Magnetic Suspension Melting Process,” in Ref. 117, pp. 69–74.

    Google Scholar 

  126. S. Oshima and R. Yamane, “Shape-Control of Liquid Metal Free Surfaces by Means of a Static Magnetic Field,” in Ref. 117, pp. 251–259.

    Google Scholar 

  127. C.H. Winstead and J.F. Hoburg, “Bulk-Coupled Electromechanical and Electrothermal Instability Mechanisms in Magnetically Confined Liquid Metals,” in Ref. 117, pp. 4553.

    Google Scholar 

  128. Y. Fautrelle, “Free Surface Electromagnetic Instabilities in Liquid Metals,” in Ref. 117, pp. 63–68.

    Google Scholar 

  129. A. Warczok and A. Godychi-Cwirko, “Magnetohydrodynamic Buoyancy Force ofMetal Inclusions in Liquid Slag,” in Ref. 117, pp. 291–298.

    Google Scholar 

  130. T.T. Natarajan and N. El-Kaddah, “A Finite ElementIntegral Method for Two Dimensional Eddy Current Problems,” in Ref. 117, pp. 3–9.

    Google Scholar 

  131. B. Farouk, D. Apelian, and Y.G. Kim, “A Numerical and Experimental Study of the Solidication Rate in a Twin-Belt Caster,” Metall. Trans. B, 23B (1992), pp. 477–492.

    CAS  Google Scholar 

  132. G.-X. Wang and E.F. Matthys, “Two-Dimensional Boundary-Layer Modeling of Planar Flow Melting-Spinning with Undercooling,” Melt-Spinning and Strip Casting: Research and Implementation, ed. E.F. Matthys (Warrendale, PA: TMS, 1992), pp. 263–282.

    Google Scholar 

  133. N. Ikemiya et al., “Surface Tensions and Densities of Li-FMF3 (M: Nd, Gd, La) Binary Systems,” J. Japan Inst. Metals, 55 (1991), pp. 1194–1198.

    CAS  Google Scholar 

  134. K.S. Filippov, “Density and Surface Tension of Iron and Fe-Cu-S Melts,” Russ. Metall., 1 (1992), pp. 46–48.

    Google Scholar 

  135. S.W. Ip and J.M. Toguri, “Entrainment Behavior of Copper and Copper Matte in Copper Smelting Operations,” Metall. Trans. B, 23B (1992), pp. 303–311.

    CAS  Google Scholar 

  136. W. Liu et al., “Interfacial Tension between Liquid Steel and BaO-Containing Slags,” Iron & Steelmaker, 19 (6) (1992), pp. 51–56.

    Google Scholar 

  137. K. Mukai and N. Shinozaki, “Melting and Flow Behavior of Fe-O Melts Heated by Plasma Arc,” Mater. Trans. JIM, 33 (1992), pp. 45–50.

    CAS  Google Scholar 

  138. R.E. Roth, R. Jiang, and R.J. Fruehan, “Foaming of Ladle and BOS-Mn Smelting Slags,” Iron & Steelmaker, 19 (11) (1992), pp. 55–63.

    CAS  Google Scholar 

  139. X. Wang. R.D. Peterson, and A.T. Tabereaux, “Electrical Conductivity of Cryolitic Melts,” in Ref. 23, pp. 481–488.

    Google Scholar 

  140. V.V. Tekuchev and V.I. Stremousov, “An Acoustic Study of the Viscosity of Binary Melts,” Russ. Metall., No. 3 (1991), pp. 34–36.

  141. T. Akiyama et al., “Measurement and Modeling of Thermal Conductivity for Dense Iron Oxide and Porous Irox Ore Agglomerates in Stepwise Reduction,” ISIJ International, 32 (1992), pp. 829–837.

    CAS  Google Scholar 

  142. M. Harada et al., “Thermal Conductivities of Molten Alkali Metal Halides,” Ind. Eng. Chem. Res., 31 (1992), pp. 2400–2407.

    CAS  Google Scholar 

  143. I.I. Statkevich et al., “Absorption of Nitrogen by Molten Niobium,” Russ. Metall., No. 4 (1991), pp. 178–181.

  144. H. Fukuyama et al., “Solublities of CO2 and Redox Equilibria of Sb and As in Na2O-Sb2Om and Na2O-As2Om Melts,” J. Japan Inst. Metals, 55 (1991), pp. 1322–1330.

    CAS  Google Scholar 

  145. S. Simeonov and M. Maeda, “Dissolution of Carbon Dioxide in CaO-CaF2-Al2O3 Based Melts Containing Na2O or K2O Oxide,” Steel Research, 63 (1992), pp. 189–193.

    CAS  Google Scholar 

  146. R.A. Berryman and I.D. Sommerville, “Carbon Solubility as Carbide in Calcium Silicate Melts,” Metall. Trans. B, 23B (1992), pp. 223–227.

    CAS  Google Scholar 

  147. P.J. Tumidajski and M. Blander, “Solubility of FeCl2 in Molten NaCl-AlCl3,” Can. Metall. Quart., 31 (1992), pp. 25–30.

    CAS  Google Scholar 

  148. H.A. Gasteiger, W.J. Frederick, and R.C. Streisel, “Solubility of Aluminosilicates in Alkaline Solutions and a Thermodynamic Equilibrium Model,” Ind. Eng. Chem. Res., 31 (1992), pp. 1183–1190.

    CAS  Google Scholar 

  149. D. Zhang, T. Azakami, and A. Yazawa, “Utilization of Alcohols for the Dehydration of Magnesium Chloride,” Can. Metall. Quart., 31 (1992), pp. 189–194.

    CAS  Google Scholar 

  150. V.S. Sudavtsova, V.S. Savchenko, and K.A. Yushchenko, “Thermodynamic Properties of Melts of the Ni-O System,” Russ. Metall., No. 3 (1991), pp. 55–56.

  151. M.V. Mikhailovskaya and V.S. Sudavtsova, “Thermodynamic Properties of Cu-O-Sr and Cu-Sr Melts,” Russ. Metall., No. 6 (1991), pp. 25–29

  152. M. Bienzle et al., “Thermodynamic Study of the Silver-Rich Ag-Cu Solid Solution,” Mater. Trans. JIM, 33 (1992), pp. 51–56.

    CAS  Google Scholar 

  153. S. Sugino, T. Hori, and H. Hagiwara, “Activity of Zinc in Molten Gold and Gold-Copper Alloy,” J. Japan Inst. Metals, 56 (1992), pp. 779–784.

    CAS  Google Scholar 

  154. V.P. Nizhenko, L.I. Floka, and G.P. Khilya, “Surface Properties of Binary Au-(Fe, Co, Ni) Melts,” Russ. Metall., No. 3 (1991), pp. 37–40.

  155. H. Hoshino et al., “Activities of Titanium in Molten Copper at Dilute Concentrations Measured by Solid-State Electrochemical Cells at 1373 K,” Metall. Trans. B, 23B (1992), pp. 169–173.

    CAS  Google Scholar 

  156. K. Kameda, K. Yamaguchi, and T. Kon, “Activity of Liquid Tl-Bi Alloys Measured by an EMF Method Using Zirconia Electrolyte,” J. Japan Inst. Metals, 56 (1992), pp. 900–906.

    CAS  Google Scholar 

  157. I. Katayama, S. Matsushima, and Z. Kozuka, “Activity Measurements of Mn-In Alloys by the EMF Method with CaF2 Solid Electrolyte,” Mater. Trans. JIM, 32 (1991), pp. 943–946.

    CAS  Google Scholar 

  158. N.N. Alekseeva et al., “Determining the Activity of Components in the System Fe-Ni-Co,” Soviet J. Non-Ferrous Metals, 29 (1) (1988), pp. 22–23.

    Google Scholar 

  159. Z.-C. Wang, X.-H. Zhang, and J.-K. Zhou, “High-Temperature Isopiestic Studies on the Liquid Solutions Hg-CdSn,” Metall. Trans. B, 23B (1992), pp. 623–629.

    CAS  Google Scholar 

  160. T. Ogura et al., “Activity Determinator for the Automatic Measurements of the Chemical Potentials of FeO in Metallurgical Slags,” Metall. Trans. B, 23B (1992), pp. 459–466.

    CAS  Google Scholar 

  161. S. Yamashita et al., “Thermochemical Activities and Phase Relationships in BaO + SiO2 + FexO Ternary Slags by Solid Oxide Galvanic Cells at 1673 K,” Iron & Steelmaker, 19 (9) (1992). pp. 57–63.

    CAS  Google Scholar 

  162. Z.-C. Wang et al., “Comparative Investigations among Binary Molten Salt Mixtures PbCl2AgCl, PbCl2-LiCl2 and PbCl2-KCl Using an Isopiestic Technique,” Metall. Trans. B, 23B (1992), pp. 666–667.

    CAS  Google Scholar 

  163. M. Tanaka, T. Tamagawa, and Y. Hamada, “Estimation of Activities in the Aqueous Solution Systems of HCl-NaCl and HCl-NiCl2 Using the Pitzer Method,” Mater. Trans. JIM, 33 (1992), pp. 380–390.

    CAS  Google Scholar 

  164. M. Tanaka, T. Tamagawa, and Y. Hamada, “Estimation of Activities in the Aqueous Solution Systems of HCl-CuCl2 and HCl-FeCl3 Using the Pitzer Method,” Mater. Trans. JIM, 33 (1992), pp. 391–399.

    CAS  Google Scholar 

  165. M. Jaskula and J. Hotlos, “Mean Thermodynamic Activity Coefficient of CuSO4 in the Ternary System CuSO4-H2SO4-H2O at 60°C,” Hydrometallurgy, 31 (1992), pp. 233–242.

    CAS  Google Scholar 

  166. S. Simeonov, K. Fukita, and M. Maeda, “Influence of Li2O on the Carbonate Capacity of CaO-CaF2-Al2O3 Melts,” Metall. Trans. B, 23B (1992), pp. 183–187.

    CAS  Google Scholar 

  167. T. Kozono and H. Suito, “Thermodynamics of Nitrogen in BaO-Al2O3 and BaO-SiO2-Al2O3 Melts,” Ironmaking Steelmaking, 19 (1992), pp. 145–151.

    CAS  Google Scholar 

  168. K. Tomioka and H. Suito, “Nitride Capacities in CaO-SiO2 and CaO-SiO2-Al2O3 Melts,” Steel Research, 63 (1992), pp. 169.

    Google Scholar 

  169. H. Wenz and D. Janke, “Nitrogen Solubility in Metallurgical Slags Equilibrated with Fe-Al or Fe-Ca Melts,” Steel Research, 63 (1992), pp. 47–59.

    CAS  Google Scholar 

  170. H. Wenz and D. Janke, “Chemical Behaviour of Nitrogen in Metallurgical Slags,” Steel Research, 63 (1992), pp. 105–111.

    CAS  Google Scholar 

  171. R. Inoue and H. Suito, “Silicon-Oxygen Equilibrium and Nitrogen Distribution between CaO-SiO2 Slags and Liquid Iron,” Metall. Trans. B, 23B (1992), pp. 613–621.

    CAS  Google Scholar 

  172. C. Nassaralla and R.J. Fruehan, “Phosphate Capacity of CaO-Al2O3 Slags Containing CaF2, BaO, Li2O, or Na2O,” Metall. Trans. B, 23B (1992), pp. 117–123.

    CAS  Google Scholar 

  173. R.W. Young et al., “Use of Optical Basicity Concept for Determining Phosphorus and Sulphur Slag-Metal Partitions,” Ironmaking Steelmaking, 19 (1992), pp. 201–219.

    CAS  Google Scholar 

  174. I.P. Rachev, F. Tsukihashi, and N. Sano, “Solubility of BaS in BaO-BaF2 Slag and the Influence of FeOx, SiO2, Cr2O3, BaCl2, CaO, and MgO on the Sulfide Capacity of This System,” Metall. Trans. B, 23B (1992), pp. 175–181.

    CAS  Google Scholar 

  175. S. Simeonov, T. Sakai, and M. Maeda, “Sulfide Capacities of CaO-CaF2-CaCl2 Melts,” Metall. Trans. B, 23B (1992), pp. 325–330.

    CAS  Google Scholar 

  176. W.H. Van Niekerk and R.J. Dippenaar, “Equilibrium between Na2O-Containing Slags and Carbon-Saturated Iron at 1359°C: The Controlling Oxygen Potential,” Metall. Trans. B, 23B (1992), pp. 395–397.

    Google Scholar 

  177. H. Ono et al., “Determinaiton of Standard Gibbs Energies of Formation of CaC2, SrC2, and BaC2,” Metall. Trans. B, 23B (1992), pp. 313–316.

    CAS  Google Scholar 

  178. J. Wang and H.-J. Engell, “Invesigation of the Thermodynamic Properties of Ni-Al Intermetallic Compounds by an EMF Method,” Steel Research, 63 (1992), pp. 320–323.

    CAS  Google Scholar 

  179. A. Mikula, “Thermodynamic Properties in the Liquid Ag-Sb-Zn System,” Metall. Trans. B, 23B (1992), pp. 601–611.

    CAS  Google Scholar 

  180. V.T. Vitusevich, “Enthalpy of Melt Formation in the System Cr-Si-C,” Russ. Metall., No. 1 (1992), pp. 40–43

  181. V.S. Sudavtsova and N.O. Sharkina, “Thermodynamic Properties of Melts in the Fe-Ni-O-Zr(Nb, Mo) System,” Russ. Metall., No. 1(1992), pp. 44–45.

    Google Scholar 

  182. D. El Allam et al., “Enthalpies of Formation of Liquid and Solid (Gallium + Palladium) Alloys,” Metall. Trans. B, 23B (1992), pp. 39–44.

    CAS  Google Scholar 

  183. O.Yu. Sidorov et al., “Enthalpy of Mixing of the Components in Molten Binary Alloys of Manganese with Zirconium,” Russ. Metall., No. 3 (1991), pp. 53–54.

  184. W.-G. Jung and O.J. Kleppa, “Standard Molar Enthalpies of Formation of McAl (Me=Ru, Rh, Os, Ir),” Metall. Trans. B, 23B (1992), pp. 53–64.

    CAS  Google Scholar 

  185. R. Inoue and H. Suito, “Determination of Oxygen in Iron-Aluminum Alloy by Inert Gas Fusion-infrared Absorptiometry,” Mater. Trans. JIM, 32 (1991), pp. 1164–1169.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, H.Y., Cho, W.D. Developments in physical chemistry and basic principles. JOM 45, 40–44 (1993). https://doi.org/10.1007/BF03223286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223286

Keywords

Navigation