Advertisement

JOM

, Volume 48, Issue 10, pp 24–29 | Cite as

Percolative current flow in high-Jc, polycrystalline high-Tc superconductors

  • A. Goyal
  • E. D. Specht
  • D. K. Christen
  • D. M. Kroeger
  • A. Pashitski
  • A. Polyanskii
  • D. C. Larbalestier
High-Temperature Superconductor Overview

Abstract

In this article, experiments designed to ascertain the percolative nature of current flow in high critical-current density (Jc) polycrystalline superconductors are reviewed. A direct correlation between the grain-orientation texture with current transport in high-Jc TlB2Ca2Cu3Ox thick films and Bi2Sr2Ca2Cu3Ox powder-in-tube tapes is obtained. Magnetooptical visualization of the current flow in the same regions confirms the percolative nature of current flow. Furthermore, numerical modeling of the current flow based on the observed grain boundary character distribution and the effects of the grain boundary misorientation angle on (Jc) was found to predict the percolative nature of current flow. These studies indicate that in order to increase the (Jc) further, increased fractions of small-angle boundaries are required and, hence, provide a research direction for the next generation of high-temperature superconducting wire.

Keywords

Current Flow Misorientation Angle Coincident Site Lattice Boundary Misorientation Coincident Site Lattice Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    JOM, technical topic concerning the bulk application of high-Tc superconductors, 47 (8) (1995).Google Scholar
  2. 2.
    JOM, technical topic concerning advances in the processing of high-Tc superconductors, 46 (12) (1994).Google Scholar
  3. 3.
    D. Dimos et al., Phys. Rev. Lett., 61 (1998), p. 219; D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B, 41 (1990), p. 4038.Google Scholar
  4. 4.
    A.H. Cardonaet al., Appl. Phys. Lett., 62 (4) (1993), p. 411.Google Scholar
  5. 5.
    M. Kawasaki et al., Appl. Phys. Lett., 62 (4) (1993), p. 417.Google Scholar
  6. 6.
    T. Nabatame et al., Appl. Phys. Lett., 65 (6) (1994), p. 776.Google Scholar
  7. 7.
    N. Tomita, Y. Takahashi, and Y. Ishida, Jpn. J. Appl. Phys., 29 (1990), p. L30; N. Tomita et al., Jpn. J. Appl. Phys., 31 (1992), p. L942.Google Scholar
  8. 8.
    J.L. Wang et al., Physica C, 230 (1994), p. 189.Google Scholar
  9. 9.
    D.M. Kroeger et al., Appl. Phys. Lett., 64 (1) (1994), p. 106.Google Scholar
  10. 10.
    E.D. Specht et al., Physica C, 226 (1994), p. 76.Google Scholar
  11. 11.
    A. Goyal et al., J. of Electronic Mater., 23 (1994), p. 1191.Google Scholar
  12. 12.
    D.G. Brandon, Acta Metall., 14 (1956), p. 1479.Google Scholar
  13. 13.
    J. Rhyner and G. Blatter, Phys. Rev. B, 40 (1990), p. 829.Google Scholar
  14. 14.
    O.K. Christen et al., Proc. of the 7th US-Japan Workshop on High-T c Superconductors, p. 116.Google Scholar
  15. 15.
    E.D. Specht et al., Physica C, 242 (1995), p. 164.Google Scholar
  16. 16.
    A.E. Pashitski et al., manuscript in preparation.Google Scholar
  17. 17.
    A. Goyal et al., Appl. Phys. Lett., 66 (1995), p. 2903.Google Scholar
  18. 18.
    A. Goyal et al., to be published.Google Scholar
  19. 19.
    D. Larbalestier et al., JOM, 46 (12) (1994), p. 20.CrossRefGoogle Scholar
  20. 20.
    A. Goyal, E.D. Specht, and T.A. Mason, Appl. Phys. Lett., 68 (1996), p. 711.Google Scholar
  21. 21.
    B. Hensel et al., Physica C., 205 (1993), p. 329.Google Scholar
  22. 22.
    J.H. Cho et al., Appl. Phys. Lett., 64 (22) (1994), p. 3030.Google Scholar
  23. 23.
    M.F. Skyes and J.W. Essam, Phys. Rev., 133 (1964), p. A310.Google Scholar
  24. 24.
    E.D. Specht, A. Goyal, and D.M. Kroeger, Phys. Rev. B, 53 (1996), p. 3585.Google Scholar
  25. 25.
    Y. Iijima et al., Appl. Phys. Lett., 60 (1992), p. 769; Y. Iijima et al., J. Appl. Phys. Lett., 74 (1993), p. 1905.Google Scholar
  26. 26.
    R.P. Reade et al., Appl. Phys. Lett., 61 (1993), p. 2231.Google Scholar
  27. 27.
    X.D. Wu et al., Appl. Phys. Lett., 67 (1995), p. 2347.Google Scholar
  28. 28.
    A. Goyal et al., submitted to Appl. Phys. Lett. (1996); D.P. Norton et al., unpublished.Google Scholar
  29. 29.
    D.C. Larbalestier, to be published in the Proceedings of the 10th Anniversary of the TcSUH Workshop on Superconductivity, February, 1996.Google Scholar

Copyright information

© TMS 1996

Authors and Affiliations

  • A. Goyal
    • 1
  • E. D. Specht
    • 1
  • D. K. Christen
    • 1
  • D. M. Kroeger
    • 1
  • A. Pashitski
    • 2
  • A. Polyanskii
    • 2
  • D. C. Larbalestier
    • 2
  1. 1.Oak Ridge National Laboratory (ORNL)USA
  2. 2.University of WisconsinUSA

Personalised recommendations