Skip to main content
Log in

Ultrahigh-vacuum CVD Epitaxy of silicon and GexSi1−x

  • Low-Temperature Silicon Epitaxy
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The growth of epitaxial layers of germanium-silicon alloys is important for advanced semiconductor devices such as heterojunction bipolar transistors. This article explains the principles behind ultrahigh-vacuum chemical vapor deposition (UHV/CVD). This growth technique is capable of growing device-quality layers at low temperatures and, in addition, has a potential for high productivity in manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hull et al., “In Situ Observations of Misfit Dislocation Propagation in GexSi1-x/Si(100) Heterostructures,” Appl. Phys. Lett., 52 (19) (1988), pp. 1605–1607.

    CAS  Google Scholar 

  2. R.H.M. van de Leur et al., “Critical Thickness for Pseudomorphic Growth of Si/Ge Alloys and Superlattices,” J. Appl. Phys., 64 (6) (1988), pp. 3043–3050.

    Google Scholar 

  3. B.S. Meyerson, “Low Temperature Silicon Epitaxy by Ultrahigh Vacuum/Chemical Vapor Deposition,” Appl. Phys. Lett., 48 (12) (1986), pp. 797–799.

    CAS  Google Scholar 

  4. B.S. Meyerson et al., “Cooperative Growth Phenomena in Silicon/Germanium Low-Temperature Epitaxy,” Appl. Phys. Lett., 53 (25) (1988), pp. 2555–2557.

    CAS  Google Scholar 

  5. B.S. Meyerson et al., “Low Temperature Silicon Epitaxy by Hot Wall Ultrahigh Vacuum/Low Pressure Chemical Vapor Deposition Techniques: Surface Optimization,” J. Electrochem. Soc., 133 (6) (1986), pp. 1232–1235.

    CAS  Google Scholar 

  6. D.W. Greve et al., “Construction and Operation of an Ultrahigh Vacuum Chemical Vapor Deposition Epitaxial Reactor for Growth of Ge,Si1-x,” J. Vac. Sci. Technol. B, 8 (3) (1990), pp. 511–515.

    Google Scholar 

  7. T. Cambria et al. “Identification and Removal of Impurities inSilane and Dichlorosilane Gas Streams,” Solid State Technol., 33 (10) (1990), pp. 95–98.

    Google Scholar 

  8. K. Sugiyama et al., “Ultra Clean Gas Delivery System for Advanced Submicron ULSI Processing” (Paper presented at ECS Spring Meeting, Hollywood, FL, May, 1989).

    Google Scholar 

  9. M. Caymax et al., “Growth of Epitaxial Si-Layers at Low Temperature in a UHV-VLPCVD Reactor,” Proceedings of the 2nd International Conference on Electronic Materials (Pittsburgh, PA: MRS, 1990), pp. 519–524.

    Google Scholar 

  10. J. Murota et al., “Low-Temperature Silicon Selective Deposition and Epitaxy on Silicon Using the Thermal Decomposition of Silane Under Ultraclean Environment,” Appl. Phys. Lett., 54 (11) (1989), pp. 1007–1009.

    CAS  Google Scholar 

  11. D.J. Robbins et al., “In-Situ Light Scattering Studies of Substrate Cleaning and Layer Nucleation in Silicon MBE,” J. Cryst. Growth, 81 (1987), pp. 421–427.

    CAS  Google Scholar 

  12. B.A. Joyce et al., “A Study of Nucleation in Chemically Grown Epitaxial Silicon Films Using Molecular Beam Techniques-I: Experimental Methods,” Phil. Mag., 8 (14) (1966), PP. 289–299.

    Google Scholar 

  13. H. Hirayama, “Gas Source Silicon Molecular Beam Epitaxy Using Silane,” Appl. Phys. Lett., 51 (26) (1987), pp. 2213–2215.

    CAS  Google Scholar 

  14. J.H. Comfort et al., “Chemical Vapor Deposition of Epitaxial Silicon from Silane at Low Temperatures,” J. Electrochem. Soc., 136 (8) (1989), pp. 2386–2398.

    CAS  Google Scholar 

  15. P. Rai-Choudhury et al., “Selective Growth of Epitaxial Silicon and Gallium Arsenide,” J. Electrochem. Soc., 118 (1) (1971), pp. 107–110.

    CAS  Google Scholar 

  16. D.J. Robbins et al, Proceedings of the 2nd International Conference on Electronic Materials (Pittsburgh, PA: MRS, 1990), pp. 477–482.

    Google Scholar 

  17. F.W. Smith et al., “Reaction of Oxygen with Si(111) and (100): Critical Conditions for the Growth of SiO2J. Electrochem. Soc., 129 (6) (1982), pp. 1300–1306.

    CAS  Google Scholar 

  18. G. Ghidini et al., “Interactionof H2 O with Si(111) and (100): Critical Conditions for the Growth of SiO2,” J. Electrochem. Soc., 131 (12) (1984), pp. 2924–2928.

    CAS  Google Scholar 

  19. J.A. Friedrich et al., “Limitations in Low-Temperature Silicon Epitaxy Due to Water Vapor and Oxygen in the Growth Ambient,” Appl. Phys. Lett., 53 (25) (1988), pp. 2543–2545.

    CAS  Google Scholar 

  20. M. Racanelli et al., “Alternate Surface Cleaning Approaches for UHV/CVD Epitaxy of Si and GexSi1-x,” (submitted to J. Electrochem. Soc.).

  21. B.S. Meyerson et al., “Bistable Conditions for Low-Temperature Silicon Epitaxy,” Appl. Phys. Lett., 57 (10) (1990), pp. 1034–1036.

    CAS  Google Scholar 

  22. N. Hirashita et al., “Surface Chemistry of HF-Treated Silicon: Effects of Surface Hydrogen on the Oxidation Kinetics at Room Temperature,” Semiconductor Silicon 1990 (Pennington, NJ: the Electrochemical Society, 1990), pp. 313–317.

    Google Scholar 

  23. T. Takahagi et al., “The Formation of Hydrogen Passivated Silicon Single-Crystal Surfaces Using Ultraviolet Cleaning and HF Etching,” J. Appl. Phys., 64 (7) (1988), pp. 3516–3521.

    CAS  Google Scholar 

  24. M. Racanelli (Ph.D. thesis, Carnegie Mellon University, 1990).

    Google Scholar 

  25. R.A. Craven, Semiconductor Silicon 1981, (Pennington, NJ: the Electrochemical Society, 1981), p. 224.

    Google Scholar 

  26. M. Bevan, Westinghouse Science and Technology Center, private communication with author.

  27. A.J. Pidduck et al., “In Situ Laser Light Scattering: I. Detection of Defects Formed During Silicon Molecular Beam Epitaxy,” J. Electrochem. Soc., 136 (10) (1989), pp. 3083–3088.

    CAS  Google Scholar 

  28. N. Nakamura et al., “An Observation of 650°C Deformation of Si Surface Under Ultra High Vacuum,” J. Appl. Phys., 68 (6) (1990), 3038–3040.

    CAS  Google Scholar 

  29. B.S. Meyerson et al., “Low Temperature Epitaxy by Ultrahigh Vacuum/Chemical Vapor Deposition” (Paper presented at 178th Electrochemical Society Meeting, Seattle, WA, October 1990).

    Google Scholar 

  30. M. Racanelli and D.W. Greve, “Low-Temperature Selective Epitaxy by Ultrahigh-Vacuum Chemical Vapor Deposition from SiH4 and GeH4/H2Appl. Phys. Lett., 58 (19) (1991), pp. 2096–2098.

    CAS  Google Scholar 

  31. G. Patton et al., “75 GHz fr SiGe Base Heterojunction BipolarTransistors,” IEEE Electron Dev. Lett., EDL-11 (4) (1990), pp. 171–173.

    Google Scholar 

  32. T.C. Chen et al., “Submicrometer Si and SiGe EpitaxialBase Double-Poly Self-Aligned Bipolar Transistors,” IEEE Trans. Electron Dev., ED-38 (4) (1991), pp. 941–943.

    Google Scholar 

  33. B.S. Meyerson et al., “Silane Pyrolysis Rates for the Modeling of Chemical Vapor Deposition,” J. Appl. Phys., 61 (2) (1987), pp. 785–787.

    CAS  Google Scholar 

  34. S.M. Gates et al., “Surface Reactions in Si Chemical Vapor Deposition from Silane,” J. Vac. Sci. Technol. A, 8 (3) (1990), pp. 2965–2969.

    CAS  Google Scholar 

  35. D.W. Greve and M. Racanelli, “Growth Rate of Doped and Undoped Silicon by Ultra-High Vacuum Chemical Vapor Deposition,” J. Electrochem. Soc., 138 (6) (1991), pp. 1744–1748.

    CAS  Google Scholar 

  36. K. Sinniah et al., “New Mechanism for Hydrogen Desorption from Covalent Surfaces: The Monohydride Phase on Si (100),” Phys. Rev. Lett., 62 (5) (1989), pp. 567–570.

    CAS  Google Scholar 

  37. J.H. Comfort et al., “Chemical Vapor Deposition of Epitaxial Silicon from Silaneat Low Temperatures,” J. Electrochem. Soc., 136 (8) (1989), pp. 2386–2398.

    CAS  Google Scholar 

  38. D.J. Robbins et al., “New Approach to the Kinetics of Silicon Vapor Phase Epitaxy at Reduced Temperature,” Appl. Phys. Lett., 50 (22) (1987), pp. 1575–1577.

    CAS  Google Scholar 

  39. J.T. Yates, Jr., University of Pittsburgh, private communication with author.

  40. M. Racanelli et al., “Temperature Dependence of Growth of GexSi1-x by Ultrahigh Vacuum Chemical Vapor Deposition,” Appl. Phys. Lett., 56 (25) (1990), pp. 2524–2526.

    CAS  Google Scholar 

  41. D.J. Robbins et al., “A Model for Heterogeneous Growth of Si,-,Ge. Films from Hydrides” J. Appl. Phys., 69 (6) (1991), pp. 3729–3732.

    CAS  Google Scholar 

  42. S.R. Gunn, “The Heats of Formation of HxSe and H2Te: Correlations of Simple Covalent Hydrides” J. Phys. Chem., 68 (4) (1964), pp. 949–952.

    CAS  Google Scholar 

  43. F.E. Saalfeld et al., “The Mass Spectra of Volatile Hydrides-I: The Monoelemental Hydrides of the Group IVB and VB Elements,” Inorg. Chem., 2 (1) (1963), pp. 46–50.

    CAS  Google Scholar 

  44. P.J. Wang et al., “Two Dimensional Hole Gas in Si/Si0.85Ge0.15/Si Modulation-Doped Double Heterostructures,” Appl. Phys. Lett., 54 (26) (1989), pp. 2701–2703.

    CAS  Google Scholar 

  45. P.J. Wang et al., “High Hole Mobility in Si/Si1-xGex/Si pType Modulation-Doped Double Heterostructures,” Appl. Phys. Lett., 55 (22) (1989), pp. 2333–2335.

    CAS  Google Scholar 

  46. J. Tersoff, “Equilbrium Segregation at a SiGe Alloy Surface” (Paper presented at the 177th Electrochemical Society Meeting, Montreal, Canada, May 1990).

    Google Scholar 

  47. B.A. Joyce et al., “A Study of Nucleation in Chemically Grown Epitaxial Silicon Films Using Molecular Beam Techniques-III: Nucleation Rate Measurements and the Effect of Oxygen on Initial Growth Behavior,” Phil. Mag., 8 (15) (1967), pp. 1167–1187.

    Google Scholar 

  48. M.C. Oztiirk et al., “Rapid Thermal Chemical Vapor Deposition of Germanium on Silicon and Silicon Dioxide New Applications of Ge in ULSI Technologies,” JEM, 19 (10) (1990), pp. 1129–1134.

    Google Scholar 

  49. D.C. Paine, Brown University, private communication with author.

  50. J.J. Lander et al., “Low-Energy-Diffraction Study of the Surface Reactions of Germanium with Oxygen and with Iodine-II,” J. Appl. Phys., 34 (5) (1963), pp. 1411–1415.

    CAS  Google Scholar 

  51. G. Patton et al., “SiGe-Base Heterojunction Bipolar Transistors: Physics and Design Issues” (Paper presented at 1990 International Electron Devices Meeting, San Francisco, CA, December 1990).

    Google Scholar 

  52. M. Racanelli and D.W. Greve, Proceedings of the 2nd International Conference on Electronic Materials (Pittsburgh, PA: MRS, 1990), pp. 513–518.

    Google Scholar 

  53. M. Racanelli and D. W. Greve, J. Vac. Sci. Technol., in press.

  54. B.S. Meyerson et al., “Nonequilibrium Boron Doping Effects in Low-Temperature Epitaxial Silicon Films,” Appl. Phys. Lett., 50 (2) (1987), pp. 113–115.

    CAS  Google Scholar 

  55. M.L. Yu et al., “Doping Reaction of PH, and B2H6 with Si(100),” J. Appl. Phys., 59 (12) (1986), pp. 4032–4037.

    CAS  Google Scholar 

  56. B.S. Meyerson et al., “Phosphorus-Doped Polycrystalline Silicon via LPCVD: II. Surface Interactions of the Silane/Phosphine/Silicon System,” J. Electrochem. Soc., 131 (10) (1984), pp. 2366–2368.

    CAS  Google Scholar 

  57. H. Kurokawa, “P-Doped Polysilicon Film Growth Technology,” J. Electrochem. Soc., 129 (11) (1982), pp. 2620–2624.

    CAS  Google Scholar 

  58. D. Harame et al., “30 GHz Polysilicon-Emitter and SingleCrystal-Emitter Graded SiGe-Base PNP Transistors” (Paper presented at 1990 International Electron Devices Meeting, San Francisco, CA, December 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Racanelli, M., Greve, D.W. Ultrahigh-vacuum CVD Epitaxy of silicon and GexSi1−x . JOM 43, 32–37 (1991). https://doi.org/10.1007/BF03222691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222691

Keywords

Navigation