Advertisement

JOM

, Volume 43, Issue 10, pp 32–37 | Cite as

Ultrahigh-vacuum CVD Epitaxy of silicon and GexSi1−x

  • Marco Racanelli
  • David W. Greve
Low-Temperature Silicon Epitaxy Overview

Abstract

The growth of epitaxial layers of germanium-silicon alloys is important for advanced semiconductor devices such as heterojunction bipolar transistors. This article explains the principles behind ultrahigh-vacuum chemical vapor deposition (UHV/CVD). This growth technique is capable of growing device-quality layers at low temperatures and, in addition, has a potential for high productivity in manufacturing.

Keywords

Epitaxial Layer Transmission Electron Micro Diborane Sticking Coefficient GeH4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hull et al., “In Situ Observations of Misfit Dislocation Propagation in GexSi1-x/Si(100) Heterostructures,” Appl. Phys. Lett., 52 (19) (1988), pp. 1605–1607.Google Scholar
  2. 2.
    R.H.M. van de Leur et al., “Critical Thickness for Pseudomorphic Growth of Si/Ge Alloys and Superlattices,” J. Appl. Phys., 64 (6) (1988), pp. 3043–3050.Google Scholar
  3. 3.
    B.S. Meyerson, “Low Temperature Silicon Epitaxy by Ultrahigh Vacuum/Chemical Vapor Deposition,” Appl. Phys. Lett., 48 (12) (1986), pp. 797–799.Google Scholar
  4. 4.
    B.S. Meyerson et al., “Cooperative Growth Phenomena in Silicon/Germanium Low-Temperature Epitaxy,” Appl. Phys. Lett., 53 (25) (1988), pp. 2555–2557.Google Scholar
  5. 5.
    B.S. Meyerson et al., “Low Temperature Silicon Epitaxy by Hot Wall Ultrahigh Vacuum/Low Pressure Chemical Vapor Deposition Techniques: Surface Optimization,” J. Electrochem. Soc., 133 (6) (1986), pp. 1232–1235.Google Scholar
  6. 6.
    D.W. Greve et al., “Construction and Operation of an Ultrahigh Vacuum Chemical Vapor Deposition Epitaxial Reactor for Growth of Ge,Si1-x,” J. Vac. Sci. Technol. B, 8 (3) (1990), pp. 511–515.Google Scholar
  7. 7.
    T. Cambria et al. “Identification and Removal of Impurities inSilane and Dichlorosilane Gas Streams,” Solid State Technol., 33 (10) (1990), pp. 95–98.Google Scholar
  8. 8.
    K. Sugiyama et al., “Ultra Clean Gas Delivery System for Advanced Submicron ULSI Processing” (Paper presented at ECS Spring Meeting, Hollywood, FL, May, 1989).Google Scholar
  9. 9.
    M. Caymax et al., “Growth of Epitaxial Si-Layers at Low Temperature in a UHV-VLPCVD Reactor,” Proceedings of the 2nd International Conference on Electronic Materials (Pittsburgh, PA: MRS, 1990), pp. 519–524.Google Scholar
  10. 10.
    J. Murota et al., “Low-Temperature Silicon Selective Deposition and Epitaxy on Silicon Using the Thermal Decomposition of Silane Under Ultraclean Environment,” Appl. Phys. Lett., 54 (11) (1989), pp. 1007–1009.Google Scholar
  11. 11.
    D.J. Robbins et al., “In-Situ Light Scattering Studies of Substrate Cleaning and Layer Nucleation in Silicon MBE,” J. Cryst. Growth, 81 (1987), pp. 421–427.Google Scholar
  12. 12.
    B.A. Joyce et al., “A Study of Nucleation in Chemically Grown Epitaxial Silicon Films Using Molecular Beam Techniques-I: Experimental Methods,” Phil. Mag., 8 (14) (1966), PP. 289–299.Google Scholar
  13. 13.
    H. Hirayama, “Gas Source Silicon Molecular Beam Epitaxy Using Silane,” Appl. Phys. Lett., 51 (26) (1987), pp. 2213–2215.Google Scholar
  14. 14.
    J.H. Comfort et al., “Chemical Vapor Deposition of Epitaxial Silicon from Silane at Low Temperatures,” J. Electrochem. Soc., 136 (8) (1989), pp. 2386–2398.Google Scholar
  15. 15.
    P. Rai-Choudhury et al., “Selective Growth of Epitaxial Silicon and Gallium Arsenide,” J. Electrochem. Soc., 118 (1) (1971), pp. 107–110.Google Scholar
  16. 16.
    D.J. Robbins et al, Proceedings of the 2nd International Conference on Electronic Materials (Pittsburgh, PA: MRS, 1990), pp. 477–482.Google Scholar
  17. 17.
    F.W. Smith et al., “Reaction of Oxygen with Si(111) and (100): Critical Conditions for the Growth of SiO2J. Electrochem. Soc., 129 (6) (1982), pp. 1300–1306.Google Scholar
  18. 18.
    G. Ghidini et al., “Interactionof H2 O with Si(111) and (100): Critical Conditions for the Growth of SiO2,” J. Electrochem. Soc., 131 (12) (1984), pp. 2924–2928.Google Scholar
  19. 19.
    J.A. Friedrich et al., “Limitations in Low-Temperature Silicon Epitaxy Due to Water Vapor and Oxygen in the Growth Ambient,” Appl. Phys. Lett., 53 (25) (1988), pp. 2543–2545.Google Scholar
  20. 20.
    M. Racanelli et al., “Alternate Surface Cleaning Approaches for UHV/CVD Epitaxy of Si and GexSi1-x,” (submitted to J. Electrochem. Soc.).Google Scholar
  21. 21.
    B.S. Meyerson et al., “Bistable Conditions for Low-Temperature Silicon Epitaxy,” Appl. Phys. Lett., 57 (10) (1990), pp. 1034–1036.Google Scholar
  22. 22.
    N. Hirashita et al., “Surface Chemistry of HF-Treated Silicon: Effects of Surface Hydrogen on the Oxidation Kinetics at Room Temperature,” Semiconductor Silicon 1990 (Pennington, NJ: the Electrochemical Society, 1990), pp. 313–317.Google Scholar
  23. 23.
    T. Takahagi et al., “The Formation of Hydrogen Passivated Silicon Single-Crystal Surfaces Using Ultraviolet Cleaning and HF Etching,” J. Appl. Phys., 64 (7) (1988), pp. 3516–3521.Google Scholar
  24. 24.
    M. Racanelli (Ph.D. thesis, Carnegie Mellon University, 1990).Google Scholar
  25. 25.
    R.A. Craven, Semiconductor Silicon 1981, (Pennington, NJ: the Electrochemical Society, 1981), p. 224.Google Scholar
  26. 26.
    M. Bevan, Westinghouse Science and Technology Center, private communication with author.Google Scholar
  27. 27.
    A.J. Pidduck et al., “In Situ Laser Light Scattering: I. Detection of Defects Formed During Silicon Molecular Beam Epitaxy,” J. Electrochem. Soc., 136 (10) (1989), pp. 3083–3088.Google Scholar
  28. 28.
    N. Nakamura et al., “An Observation of 650°C Deformation of Si Surface Under Ultra High Vacuum,” J. Appl. Phys., 68 (6) (1990), 3038–3040.Google Scholar
  29. 29.
    B.S. Meyerson et al., “Low Temperature Epitaxy by Ultrahigh Vacuum/Chemical Vapor Deposition” (Paper presented at 178th Electrochemical Society Meeting, Seattle, WA, October 1990).Google Scholar
  30. 30.
    M. Racanelli and D.W. Greve, “Low-Temperature Selective Epitaxy by Ultrahigh-Vacuum Chemical Vapor Deposition from SiH4 and GeH4/H2Appl. Phys. Lett., 58 (19) (1991), pp. 2096–2098.Google Scholar
  31. 31.
    G. Patton et al., “75 GHz fr SiGe Base Heterojunction BipolarTransistors,” IEEE Electron Dev. Lett., EDL-11 (4) (1990), pp. 171–173.Google Scholar
  32. 32.
    T.C. Chen et al., “Submicrometer Si and SiGe EpitaxialBase Double-Poly Self-Aligned Bipolar Transistors,” IEEE Trans. Electron Dev., ED-38 (4) (1991), pp. 941–943.Google Scholar
  33. 33.
    B.S. Meyerson et al., “Silane Pyrolysis Rates for the Modeling of Chemical Vapor Deposition,” J. Appl. Phys., 61 (2) (1987), pp. 785–787.Google Scholar
  34. 34.
    S.M. Gates et al., “Surface Reactions in Si Chemical Vapor Deposition from Silane,” J. Vac. Sci. Technol. A, 8 (3) (1990), pp. 2965–2969.Google Scholar
  35. 35.
    D.W. Greve and M. Racanelli, “Growth Rate of Doped and Undoped Silicon by Ultra-High Vacuum Chemical Vapor Deposition,” J. Electrochem. Soc., 138 (6) (1991), pp. 1744–1748.Google Scholar
  36. 36.
    K. Sinniah et al., “New Mechanism for Hydrogen Desorption from Covalent Surfaces: The Monohydride Phase on Si (100),” Phys. Rev. Lett., 62 (5) (1989), pp. 567–570.Google Scholar
  37. 37.
    J.H. Comfort et al., “Chemical Vapor Deposition of Epitaxial Silicon from Silaneat Low Temperatures,” J. Electrochem. Soc., 136 (8) (1989), pp. 2386–2398.Google Scholar
  38. 38.
    D.J. Robbins et al., “New Approach to the Kinetics of Silicon Vapor Phase Epitaxy at Reduced Temperature,” Appl. Phys. Lett., 50 (22) (1987), pp. 1575–1577.Google Scholar
  39. 39.
    J.T. Yates, Jr., University of Pittsburgh, private communication with author.Google Scholar
  40. 40.
    M. Racanelli et al., “Temperature Dependence of Growth of GexSi1-x by Ultrahigh Vacuum Chemical Vapor Deposition,” Appl. Phys. Lett., 56 (25) (1990), pp. 2524–2526.Google Scholar
  41. 41.
    D.J. Robbins et al., “A Model for Heterogeneous Growth of Si,-,Ge. Films from Hydrides” J. Appl. Phys., 69 (6) (1991), pp. 3729–3732.Google Scholar
  42. 42.
    S.R. Gunn, “The Heats of Formation of HxSe and H2Te: Correlations of Simple Covalent Hydrides” J. Phys. Chem., 68 (4) (1964), pp. 949–952.Google Scholar
  43. 43.
    F.E. Saalfeld et al., “The Mass Spectra of Volatile Hydrides-I: The Monoelemental Hydrides of the Group IVB and VB Elements,” Inorg. Chem., 2 (1) (1963), pp. 46–50.Google Scholar
  44. 44.
    P.J. Wang et al., “Two Dimensional Hole Gas in Si/Si0.85Ge0.15/Si Modulation-Doped Double Heterostructures,” Appl. Phys. Lett., 54 (26) (1989), pp. 2701–2703.Google Scholar
  45. 45.
    P.J. Wang et al., “High Hole Mobility in Si/Si1-xGex/Si pType Modulation-Doped Double Heterostructures,” Appl. Phys. Lett., 55 (22) (1989), pp. 2333–2335.Google Scholar
  46. 46.
    J. Tersoff, “Equilbrium Segregation at a SiGe Alloy Surface” (Paper presented at the 177th Electrochemical Society Meeting, Montreal, Canada, May 1990).Google Scholar
  47. 47.
    B.A. Joyce et al., “A Study of Nucleation in Chemically Grown Epitaxial Silicon Films Using Molecular Beam Techniques-III: Nucleation Rate Measurements and the Effect of Oxygen on Initial Growth Behavior,” Phil. Mag., 8 (15) (1967), pp. 1167–1187.Google Scholar
  48. 48.
    M.C. Oztiirk et al., “Rapid Thermal Chemical Vapor Deposition of Germanium on Silicon and Silicon Dioxide New Applications of Ge in ULSI Technologies,” JEM, 19 (10) (1990), pp. 1129–1134.Google Scholar
  49. 49.
    D.C. Paine, Brown University, private communication with author.Google Scholar
  50. 50.
    J.J. Lander et al., “Low-Energy-Diffraction Study of the Surface Reactions of Germanium with Oxygen and with Iodine-II,” J. Appl. Phys., 34 (5) (1963), pp. 1411–1415.Google Scholar
  51. 51.
    G. Patton et al., “SiGe-Base Heterojunction Bipolar Transistors: Physics and Design Issues” (Paper presented at 1990 International Electron Devices Meeting, San Francisco, CA, December 1990).Google Scholar
  52. 52.
    M. Racanelli and D.W. Greve, Proceedings of the 2nd International Conference on Electronic Materials (Pittsburgh, PA: MRS, 1990), pp. 513–518.Google Scholar
  53. 53.
    M. Racanelli and D. W. Greve, J. Vac. Sci. Technol., in press.Google Scholar
  54. 54.
    B.S. Meyerson et al., “Nonequilibrium Boron Doping Effects in Low-Temperature Epitaxial Silicon Films,” Appl. Phys. Lett., 50 (2) (1987), pp. 113–115.Google Scholar
  55. 55.
    M.L. Yu et al., “Doping Reaction of PH, and B2H6 with Si(100),” J. Appl. Phys., 59 (12) (1986), pp. 4032–4037.Google Scholar
  56. 56.
    B.S. Meyerson et al., “Phosphorus-Doped Polycrystalline Silicon via LPCVD: II. Surface Interactions of the Silane/Phosphine/Silicon System,” J. Electrochem. Soc., 131 (10) (1984), pp. 2366–2368.Google Scholar
  57. 57.
    H. Kurokawa, “P-Doped Polysilicon Film Growth Technology,” J. Electrochem. Soc., 129 (11) (1982), pp. 2620–2624.Google Scholar
  58. 58.
    D. Harame et al., “30 GHz Polysilicon-Emitter and SingleCrystal-Emitter Graded SiGe-Base PNP Transistors” (Paper presented at 1990 International Electron Devices Meeting, San Francisco, CA, December 1990).Google Scholar

Copyright information

© TMS 1991

Authors and Affiliations

  • Marco Racanelli
    • 1
  • David W. Greve
    • 2
  1. 1.Advanced Technology Center at MotorolaUSA
  2. 2.Carnegie Mellon UniversityUSA

Personalised recommendations