, Volume 46, Issue 12, pp 42–46 | Cite as

Forming continuous alumina scales to protect superalloys

  • N. Birks
  • G. H. Meier
  • F. S. Pettit
Corrosion and Erosion Overview


The development of continuous Al2O3 scales on alloys via selective oxidation is an extremely effective approach to obtain high-temperature oxidation resistance. Depending on the alloy system, it may be necessary to optimize the selective oxidation process. For all alloy systems, improvements in oxidation resistance can be obtained by optimizing the type and concentrations of reactive elements and by controlling the concentration of sulfur.


Oxide Scale Selective Oxidation Reactive Element Sulfur Removal Growth Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.C. Wood, Oxid. Metals, 2 (1970), p. 11.Google Scholar
  2. 2.
    G.C. Wood, Oxidation of Metals and Alloys (Metals Park, OH: ASM, 1971), p. 201.Google Scholar
  3. 3.
    C.S. Giggins and F.S. Pettit, J. Electrochem. Soc., 118 (1971), p. 1782.Google Scholar
  4. 4.
    B.H. Kear et al., Oxid. Metals, 3 (1971), p. 557.Google Scholar
  5. 5.
    G.R. Wallwork and A.Z. Hed, Oxid. Metals, 3 (1971), p. 171.Google Scholar
  6. 6.
    C.A. Barrett and C.E. Lowell, Oxid. Metals, 11 (1977), p. 199.Google Scholar
  7. 7.
    J.L. Smialek and G.H. Meier, “High Temperature Oxidation, ” Superalloys II, ed. C.T. Sims, N.S. Stoloff, W.C. Hagel (New York: John Wiley and Sons, 1987), p. 295.Google Scholar
  8. 8.
    P. Kofstad,High Temperature Corrosion (New York: Elsevier Applied Science, 1988), pp. 342–378.Google Scholar
  9. 9.
    A. Rahmel and J. Spencer, Oxid. Metals, 35 (1991), p. 53Google Scholar
  10. 10.
    K.L. Luthra, Oxid. Metals, 36 (1991), p. 475.Google Scholar
  11. 11.
    E.J. Feiten and F.S. Pettit, “High Temperature Oxidation Behavior of Directionally Solidified Eutectic Alloys,” Failure Modes in Composites II, ed. James N. Fleck and Richard L. Mehan (Warrendale, PA: TMS, 1974), p. 220.Google Scholar
  12. 12.
    E.J. Feiten and F.S. Pettit, Oxid. Metals, 10, (1976), p. 189.Google Scholar
  13. 13.
    T.A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton, J. Electrochem. Soc., 131 (1984), p. 923.Google Scholar
  14. 14.
    J.L. Smialek and R. Gibala, “Diffusion Processes in A12O3 Scales: Void Growth, Grain Growth and Scale Growth,” High Temperature Corrosion, ed. R.A. Rapp (Houston, TX: National Assoc. of Corrosion Engineers, 1983), p. 274.Google Scholar
  15. 15.
    J.K. Tien and F.S. Pettit, Met. Trans., 3 (1972), p. 1587.Google Scholar
  16. 16.
    H.J. Grabke, D. Wiemer, and H. Viefhaus, Appl. Surf. Sci 47 (1991), p. 243.Google Scholar
  17. 17.
    C. Wagner, Corr. Sci., 5 (1965), p. 751.Google Scholar
  18. 18.
    C.S. Giggins and F.S. Pettit, Oxid. Metals, 14, (1980), p. 363.Google Scholar
  19. 19.
    N.S. Choudhury, H.C. Graham, and J.W. Hinze, Properties of High Temperature Alloys, ed. Z.A. Foroulis and F.S. Pettit (Pennington, NJ: Electrochemical Society, 1976), p. 668.Google Scholar
  20. 20.
    J. Rakowski, Masters thesis, University of Pittsburgh 1994.Google Scholar
  21. 21.
    C.S. Giggins and F.S. Pettit, TMS-AIME 245, (New York-TMS-AIME, 1969), p. 2509.Google Scholar
  22. 22.
    M.W. Brumm, H.J. Grabke, and B. Wagemaum, Corr. Sci., 36 (1994), p. 37.Google Scholar
  23. 23.
    D.P. Whittle and J. Stringer, Phil. Trans. Roy. Soc Lond A295 (1980), p. 309.Google Scholar
  24. 24.
    F.S. Pettit, “What Are the Effects of Oxide Dispersions in Cr and Al-Containing Alloys on the Kinetics, Growth Direction, Mode of Transport, and Adhesion of the Scale?” AGARD Proceedings No. 120 on High Temperature of Aerospace Alloys (Lyngby, Denmark: Technical Editing and Reproductions, Ltd., Harford House, 1972).Google Scholar
  25. 25.
    J. Stringer, Met. Rev., 11 (1966), p. 113.Google Scholar
  26. 26.
    E.J. Feiten, J. Electrochem. Soc., 108 (1961), p. 490.Google Scholar
  27. 27.
    F.A. Golightly, F.H. Stott, and G.C. Wood, Oxid. Met., 10 (1976), p. 163.Google Scholar
  28. 28.
    H. Pfeiffer, Werkst. Korros., 8 (1957), p. 574.Google Scholar
  29. 29.
    J.E. McDonald and J.G. Eberhardt, Trans. TMS-AIME, 233 (1965), p. 512.Google Scholar
  30. 30.
    J.E. Antill and K.A. Peakall, J. Iron & Steel Inst., 205 (1967) p. 1136.Google Scholar
  31. 31.
    A.W. Funkenbresch, J.G. Smeggil, and N.S. Bornestein, Met. Trans., 16A, (1985), p. 1164.Google Scholar
  32. 32.
    J.S. Smeggil, A.W. Funkenbresch, and N.S. Bornestein, Met. Trans., 17A, (1986), p. 923.Google Scholar
  33. 33.
    B.K. Tubbs and J.L. Smialek, “Effect of Sulfur Removal on Scale Adhesion to PW 1480,” Symposium on Corrosion and Particle Erosion at High Temperatures, ed. V. Srinivasan and K. Vedula (Warrendale, PA: TMS, 1989), p. 459.Google Scholar
  34. 34.
    R.V. McVay et al, “Oxidation of Low Sulfur Single Crystal Nickel-Base Superalloys,” Superalloys 1992, ed. S.D. Antolovich et al. (Warrendale, PA: TMS, 1992), p. 807.Google Scholar
  35. 35.
    K. Ohmura, et al., “Effect of Lanthanoid on Oxidation Behavior of Fe-Cr-Al Foil,” High Temperature Corrosion of Advanced Materials and Protective Coatings, ed. Y. Saito, B. Onay, and T. Maruyama (New York: North Holland Publishers, 1992), p. 167.Google Scholar
  36. 36.
    M.C. Stasik et al., Scripta Met. et Mater., 31, (1994); p. 1645.Google Scholar

Copyright information

© TMS 1994

Authors and Affiliations

  • N. Birks
    • 1
  • G. H. Meier
    • 1
  • F. S. Pettit
    • 1
  1. 1.University of PittsburghUSA

Personalised recommendations