, Volume 46, Issue 9, pp 32–36 | Cite as

Applying texture analysis to materials engineering problems

  • D. B. Knorr
  • H. Weiland
  • J. A. Szpunar
Texture Analysis Overview


Textures in materials have been studied extensively since the 1930s following the pioneering work of Wassermann.1,2 The modern era of texture measurement started in 1949 with the development of the x-ray pole figure technique for texture measurement by Schultz.3 Finally, modern texture analysis was initiated with the publication by Bunge4 and Roe5 of a mathematical method of pole figure inversion, which is now used to calculate the orientation distribution function (ODF). This article cannot summarize such an extensive body of work, but it does endeavor to provide the background necessary to understand texture analysis; it also illustrates several applications of texture.


Texture Analysis Austenitic Stainless Steel Neutron Diffraction Pole Figure Deep Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Wassermann, Texturen Metallischer Werkstoffe (Berlin: Springer, 1939).Google Scholar
  2. 2.
    G. Wassermann and J. Grewen, Texturen Metallischer Werkstoffe, 2nd ed. (Berlin: Springer, 1962).Google Scholar
  3. 3.
    L.G. Schultz, “A Direct Method of Determining Preferred Orientation of a Flat Reflection Specimen Using a Geiger Counter X-Ray Spectrometer,“ J. Appl Phys., 20 (1949), pp. 1030–1036.Google Scholar
  4. 4.
    HJ. Bunge, “Zur Darstellung Allgemeiner Texturen,” Z. Metell., Bd. 56 (1965), pp. 872–874.Google Scholar
  5. 5.
    R.J. Roe, “Description of Crystallite Orientation in Polycrystalline Materials. III. General Solution to Pole Figure Inversion,” J. Appl. Phys., 36 (1965), pp. 2024–2031.Google Scholar
  6. 6.
    B.D. Cullity, Elements of X-Ray Diffraction, 2nd. ed. (Reading, MA: Addison-Wesley Publishing Co., 1978), pp. 295–321.Google Scholar
  7. 7.
    G. Gottstein and K. Lücke, eds., Texture of Materials, Proceedings of the Fifth International Conference on Texture of Materials, ICOTOM5 (New York: Springer-Verlag, 1978).Google Scholar
  8. 8.
    S. Nagashima, ed., Proceedings of the Sixth International Conference on Textures of Materials, ICOTOM6 (Tokyo: Iron and Steel Institute of Japan, 1981).Google Scholar
  9. 9.
    C.M. Brakman, P. Jongenburger, and E. Mittemeijer, eds., Proceedings of the Seventh International Conference on Textures of Materials, ICOTOM7 (Noordwijkerhout: Netherlands Society for Materials Science, 1984).Google Scholar
  10. 10.
    J.S. Kallend and G. Gottstein, eds., Eighth International Conference on Textures of Materials, ICOTOM8 (Warrendale, PA: TMS, 1988).Google Scholar
  11. 11.
    R. Penelle and C. Esling, eds., Ninth International Conference on Textures of Materials, ICOTOM9, Textures and Microstructures 14–18 (1991).Google Scholar
  12. 12.
    H.J. Bunge, ed., Textures of Materials, ICOTOM-10, Proceedings of the 10th International Conference on Textures of Materials (Aedermannsdorf, Switzerland: Trans Tech Publications, 1994), pp. 157–162.Google Scholar
  13. 13.
    H.-G. Brokmeier and H. Gertel, “Quantitative Phase Analysis in Textured Materials,” Advances and Applications of Quantitative Texture Analysis, ed. H.J. Bunge and C. Esling (Oberursel, Germany: DGM Informationsgesellschaft, 1991), pp. 289–298.Google Scholar
  14. 14.
    C.M. Brakman, “Application of the ODF to Residual Stress Analysis Problems of Textured Cubic Materials. Diffraction Strain Pole Figures,” Theoretical Methods of Texture Analysis, ed. H.J. Bunge (Oberursel, Germany: DGM Informationsgesellschaft, 1987), pp. 377–390.Google Scholar
  15. 15.
    H.J. Bunge, ed., Experimental Techniques of Texture Analysis (Oberursel, Germany: DGM Informationsgesellschaft, 1986).Google Scholar
  16. 16.
    H.J. Bunge, ed., Theoretical Methods of Texture Analysis (Oberursel, Germany: DGM Informationsgesellschaft, 1987).Google Scholar
  17. 17.
    H.J. Bunge, ed., Directional Properties of Materials (Oberursel, Germany: DGM Informationsgesellschaft, 1988).Google Scholar
  18. 18.
    H.J. Bunge and C. Esling, eds., Advances and Applications of Quantitative Texture Analysis (Oberursel, Germany: DGM Informationsgesellschaft, 1991).Google Scholar
  19. 19.
    H.J. Bunge, Texture Analysis in Materials Science (Boston, Butterworths, 1982).Google Scholar
  20. 20.
    H.J. Bunge and C Esling, eds., Quantitative Texture Analysis (Oberursel: Deutsche Gesellschaft fur Metallkunde, 1982).Google Scholar
  21. 21.
    H.-R. Wenk, ed., Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis (New York: Academic Press, Inc., 1985).Google Scholar
  22. 22.
    R.H. Bragg and CM. Packer, “Quantitative Determination of Preferred Orientation,” J. Appl. Phys., 35 (1964), pp. 1322–1328.Google Scholar
  23. 23.
    H.J. Bunge and K.-H. Puch, “Principles of Texture Goniometer Measurement,” Z. Metallke., 75 (1984), pp. 124–132.Google Scholar
  24. 24.
    H. Bunge, “Experimental Techniques,” Quantitative Texture Analysis (Oberursel, Germany: Deutsche Gesellschaft fur Metallkunde, 1982), pp. 85–128.Google Scholar
  25. 25.
    Standard Method for Preparing Quantitative Pole Figures of Metals, ASTM Standard E81-63 (Philadelphia, PA: ASTM, 1974).Google Scholar
  26. 26.
    W.P. Chernock and P.A. Beck, “Analysis of Certain Errors in the X-Ray Reflection Method for the Quantitative Determination of Preferred Orientations,” J. Appl. Phys., 23 (1952), pp. 341–345.Google Scholar
  27. 27.
    F.C Phillips, The Use of Stereographic Projections in Structural Geology 3rd ed. (New York: Edward Arnold, 1971), p. 60.Google Scholar
  28. 28.
    S.S. Iyergar et al., “Analysis of Surface Layers and Thin Films by Low Incidence Angle X-Ray Diffraction,” Adv. in X-Ray Anal., 30 (1987), pp. 457–464.Google Scholar
  29. 29.
    J.J. Heizmann et al., “Low Incidence X-Ray Goniometry for Thin Films Texture Analysis,” Textures and Microstructures, 14–18 (1991), pp. 181–186.Google Scholar
  30. 30.
    J.J. Heizmann et al., “Texture Analysis of Thin Films and Surface Layers by Low Incidence Angle X-Ray Diffraction,” Adv. in X-Ray Anal., 32 (1989), pp. 285–292.Google Scholar
  31. 31.
    D.B. Knorr, “The Role of Texture on the Reliability of Aluminum-Based Interconnects,” Materials Reliability Issues in Microelectronics III, ed. K.P. Rodbell et al. (Pittsburgh, PA: MRS, 1993, Vol. 309), pp. 75–86.Google Scholar
  32. 32.
    J. A. Szpunar, “Texture and Neutron Diffraction,” Atomic Energy Rev., 142 (1976) pp. 199–261Google Scholar
  33. 33.
    P.I. Welch, “Neutron Diffraction Analysis,” Theoretical Methods of Texture Analysis, ed. H.J. Bunge (Oberursel, Germany: DGM Informationsgesellschaft, 1987), pp. 183–208.Google Scholar
  34. 34.
    H.G. Brokmeier, “Neutron Diffraction Texture Analysis,” Directional Properties of Materials (Oberursel, Germany: DGM Informationsgesellschaft, 1988), pp. 73–88.Google Scholar
  35. 35.
    J. Pospiech, K. Sztwertnia and F. Haeßner, “The Misorientation Distribution Function,” Textures and Micro-structures, 6 (1986), pp. 201–216.Google Scholar
  36. 36.
    H.J. Bunge and H. Weiland, “Orientation Correlation in Grain and Phase Boundaries,” Textures and Microstructures, 7 (1988), pp. 231–263.Google Scholar
  37. 37.
    H. Weiland, “The Determination of Long Range Misorientations in the Microstructure,” Acta Met., 40 (1992), pp. 1083–1090.Google Scholar
  38. 38.
    C.U. Nauer-Gerhardt and H.J. Bunge, “Orientation Determination by Optical Methods,” Theoretical Methods of Texture Analysis, ed. H.J. Bunge (Oberursel, Germany: DGM Informationsgesellschaft, 1987), pp. 125–142.Google Scholar
  39. 39.
    G.D. Köhlhoff, X. Sun, and K. Lücke, “The Optical Determination of Crystal Orientation,” in Ref. 10, pp. 183–188.Google Scholar
  40. 40.
    W.G. Fricke, Jr., and J.T. Ioannou, “A Practical Texture Measurement Instrument,” in Ref. 10, pp. 257–262.Google Scholar
  41. 41.
    H.J. Kopineck and H. Otten, “Texture Analyzer for On-Line rm-value Estimation,” Textures and Microstructures, 7 (1987), pp. 97–113.Google Scholar
  42. 42.
    P. Blandford and J.A. Szpunar, “On-Line X-ray Texture Measurement,” J. Nondestr. Eval., 12 (1993) pp. 21–29.Google Scholar
  43. 43.
    M. Spies and E. Schneider, “Nondestructive Analysis of the Deep-Drawing Behavior of Rolled Sheets with Ultrasonic Techniques,” Directional Properties of Materials (Oberursel, Germany: DGM Informationsgesellschaft, 1988).Google Scholar
  44. 44.
    . R.C. Stiffler, M. Daly, and R.W. Wojnar, “Ultrasonic Determination of the Degree of Recrystallization in Aluminum Sheet Using Horizontally Polarized Shear Waves,” Non-Destructive Evaluation and Material Properties II, ed. P.K. Liaw et al. (Warrendale, PA: TMS, 1994), pp. 161–170.Google Scholar
  45. 45.
    H.J. Bunge, “Three Dimensional Texture Analysis,” Inter. Mat. Rev., 32 (1987), pp. 265–290.Google Scholar
  46. 46.
    J.S. Kallend et al., “Operational Texture Analysis,” Mater. Sci. Engr., A132 (1991), pp. 1–11.Google Scholar
  47. 47.
    K.K. Puch, H. Weirich, and H.J. Bunge, “A Program-System for a Computer-Controlled Texture Goniometer,” in Ref. 8, pp. 1213–1218.Google Scholar
  48. 48.
    H.R. Wenk and U.F. Kocks, “The Representation of Orientation Distributions,” Metall. Trans. A, 18A (1987), pp. 1083–1092.Google Scholar
  49. 49.
    J.E. Hatch, ed., Aluminum: Properties and Physical Metallurgy (Metals Park, OH: ASM, 1984), pp. 125–128.Google Scholar
  50. 50.
    J. Hirsch and J. Hasenclever, “Cube Texture and Earing Control in Al Sheet,” Proceedings of the 3rd International Conference on Aluminum Alloys (ICAA3) (Trondheim, Norway: Norwegian Institute of Technology, 1992), pp. 305–310.Google Scholar
  51. 51.
    K.D. Nelson, B.L. Adams, and W.G. Fricke, Jr., “Correlation of Earing in Hot Rolled 3004 Aluminum with the Crystallite Orientation Distribution Function,” in Ref. 10, pp. 1097–1102.Google Scholar
  52. 52.
    F. Barlat, S. Panchanadeeswaran, and O. Richmond, “Earing in Cup Drawing Face-Centered Cubic Single Crystals and Polycrystals,” Met. Trans. A, 22A (July 1991), pp. 1525–1533.Google Scholar
  53. 53.
    T.J. Rickert, “Earing and Textures in Austenitic Stainless Steel Type 304,“ in Ref. 12.Google Scholar
  54. 54.
    F. Barlat, “Crystallographic Texture, Anisotropic Yield Surfaces and Forming Limits of Sheet Metals,” Mat. Sci. and Eng., 91 (1987), pp. 55–72.Google Scholar
  55. 55.
    X.-H. Zeng and F. Barlat, “Effects of Texture Gradients on Yield Loci and Forming Limit Diagrams in Various Aluminum-Lithium Sheet Alloys,” accepted for publication in Met. and Mail. Trans. A. Google Scholar

Copyright information

© TMS 1994

Authors and Affiliations

  • D. B. Knorr
    • 1
  • H. Weiland
    • 2
  • J. A. Szpunar
    • 3
  1. 1.Rensselaer Polytechnic InstituteUSA
  2. 2.Aloca CenterUSA
  3. 3.McGill UniversityUSA

Personalised recommendations