, Volume 46, Issue 1, pp 28–31 | Cite as

Developments in the synthesis of lightweight metals

  • C. M. Ward-Close
  • F. H. Froes
Aerospace Material Overview


Because of their low density, alloys of aluminum, magnesium, titanium, and intermetallic compounds such as titanium, and intermetallic compounds such as titanium aluminide are particularly attractive for aerospace applications. This article describes various methods of synthesizing and processing lightweight metals with enhanced physical properties.


Titanium Alloy Magnesium Alloy Mechanical Alloy Terminal Alloy Lightweight Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Jones, Rapid Solidification of Metals and Alloys (London: Institute of Metallurgists, 1982).Google Scholar
  2. 2.
    F.H. Froes, Space Age Metals Technology, ed. F.H. Froes and R.A. Cull (Covina, CA: SAMPE, 1988), p. 1.Google Scholar
  3. 3.
    F.H. Froes, Y.-W. Kim, and F.J. Hehmann, J. Metals, 39(8) (1987), p. 14.Google Scholar
  4. 4.
    K. Shibue and Y. Takeda, “Powder Metallurgy of Advanced Light Materials in Japan,” Defence Aerospace and Demanding Applications Conf., ed. F.H. Froes (Princeton, NJ: MPIF, 1993).Google Scholar
  5. 5.
    W.E. Quist and G.H. Narayanan, Treatise on Materials Science and Technology, ed. A.K. Vasuderan and R.D. Doherty (New York: Academic Press, 1989), p. 219.Google Scholar
  6. 6.
    C. Suryanarayana, F.H. Froes, and R.G. Rowe, Internal. Mater. Rev., 36(3) (1991), p. 85.Google Scholar
  7. 7.
    S. Krishnamurthy and F.H. Froes, Internat. Mater. Rev., 34 (1989), p. 297.Google Scholar
  8. 8.
    R. Sundaresan and F.H. Froes, J. Metals, 39(8) (1987), p. 22.Google Scholar
  9. 9.
    R. Sundaresan and F.H. Froes, Metal. Powder. Rep., 44 (1989), p. 195.Google Scholar
  10. 10.
    F.H. Froes and C. Suryanarayana, Powder Processing of Titanium Alloys, ed. A. Bose et al. (Princeton, NJ: MPIF, 1993).Google Scholar
  11. 11.
    F.H. Froes and J. Hebeisen, “Hot Isostatic Pressing of Titanium Based Materials,” Hot Isostatic Pressing, 93, ed. L. Delaey et al. (Antwerp, Belgium: 1993).Google Scholar
  12. 12.
    G.H. Narayanan et al., Processing of Structural Metals by Rapid Solidification, ed. F.H. Froes and S.J. Savage (Materials Park, OH: ASM, 1987).Google Scholar
  13. 13.
    C. Suryanarayana, R. Sundaresan, and F.H. Froes, Structural Applications of Mechanical Alloying, ed. F.H. Froes and J.J. deBarbadillo (Materials Park, OH: ASM Int., 1990), p. 193.Google Scholar
  14. 14.
    P.S. Goodwin and C.M. Ward-Close, “Process Control in the Mechanical Alloying of Ti-Al-Nb Alloys,” 2nd Int. Conf. on Structural Applications of Mechanical Alloying (Materials Park, OH: ASM Int., 1993), pp. 139–148.Google Scholar
  15. 15.
    F.H. Froes, D. Eylon, and C. Suryanarayana, JOM, 42(3) (1990), p. 26.CrossRefGoogle Scholar
  16. 16.
    R.L. Bickerdike et al., Rapidly Solidified Materials, ed. P.W. Lee and R.S. Carbonara (Materials Park, OH: ASM, 1987), p. 145.Google Scholar
  17. 17.
    R.W. Gardiner and B.V. Viney, “Electron Beam Evaporation as a Route to Advanced Light Alloys,” Proceedings of Conference: Electron Beam Melting and Refining State of the Art 1992, ed. R. Bakish (Englewood, NJ: Bakish Materials Corporation, 1992), pp. 116–125.Google Scholar
  18. 18.
    D.J. Bray et al., “Vapour Deposited Mg-Mn and Mg-Cr Alloys,” Magnesium Alloys and Their Applications, ed. B.L. Mordike and F. Hehmann (Garmisch-Patenkirchen, Germany: DGM Informationsgesellschaft, 1992), pp. 159–166.Google Scholar
  19. 19.
    C.M. Ward-Close and P.G. Partridge, “The Production of Titanium-Magnesium Alloys by Vapour Quenching,” Materials Letters, 11 (1991), pp. 295–300.Google Scholar
  20. 20.
    C.M. Ward-Close et al., “An X-Rray Diffraction Study of Vapour Quenched Titanium Magnesium Alloys” (Paper presented at the Seventh World Conference on Titanium, San Diego, CA, June 28-July 2,1992).Google Scholar
  21. 21.
    C.M. Ward-Close, P.G. Partridge, and C.J. Gilmore, “Precipitation and Hardening in Titanium-Magnesium and Titanium-Calcium Alloys” (Paper presented at the Seventh World Conference on Titanium, San Diego, CA, 28 June-2 July 1992).Google Scholar
  22. 22.
    G. Lu et al., “Microstructures of Ti Based Alloy Produced by Vapour Quenching, Electron Microscopy, Vol. 2, EUREM ’92 (Grenada, Spain: 1992), pp. 291–292.Google Scholar
  23. 23.
    A.R. Begg, “Metal-Matrix Composites by Powder Metallurgy,” Powder Metallurgy, 36(2) (1993), pp. 107–110.Google Scholar
  24. 24.
    F.H. Froes et al., SAMPE Qtly, 22(4) (1991), p. 11.Google Scholar
  25. 25.
    L. Christodoulou and J.M Brupbaker, SAMPE (1988), p. 29.Google Scholar
  26. 26.
    W.R. Mohn and D. Vukobratovich, SAMPE (1988), p. 26.Google Scholar
  27. 27.
    R.L. Trumper, “Metal-Matrix Composites-Applications and Prospects,” Metals and Materials, (1987), pp. 662–667.Google Scholar
  28. 28.
    C.M. Ward-Close and P.G. Partridge, “A Fibre Coating Process for Advanced Metal Matrix Composites,” J. Mat. Sci., 25 (1990), p. 4315.Google Scholar
  29. 29.
    P.G. Partridge and C.M. Ward-Close, “Processing of Advanced Continuous Fibre Composites: Current Practice and Potential Developments,” Int. Mat. Rev., 38(1) (1993), pp. 1–24.Google Scholar

Copyright information

© TMS 1994

Authors and Affiliations

  • C. M. Ward-Close
    • 1
  • F. H. Froes
    • 2
  1. 1.Defence Research AgencyFarnboroughUK
  2. 2.Institute for Materials and Advanced ProcessesUniversity of IdahoUSA

Personalised recommendations