Skip to main content
Log in

Developments in the synthesis of lightweight metals

  • Aerospace Material
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Because of their low density, alloys of aluminum, magnesium, titanium, and intermetallic compounds such as titanium, and intermetallic compounds such as titanium aluminide are particularly attractive for aerospace applications. This article describes various methods of synthesizing and processing lightweight metals with enhanced physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Jones, Rapid Solidification of Metals and Alloys (London: Institute of Metallurgists, 1982).

    Google Scholar 

  2. F.H. Froes, Space Age Metals Technology, ed. F.H. Froes and R.A. Cull (Covina, CA: SAMPE, 1988), p. 1.

    Google Scholar 

  3. F.H. Froes, Y.-W. Kim, and F.J. Hehmann, J. Metals, 39(8) (1987), p. 14.

    CAS  Google Scholar 

  4. K. Shibue and Y. Takeda, “Powder Metallurgy of Advanced Light Materials in Japan,” Defence Aerospace and Demanding Applications Conf., ed. F.H. Froes (Princeton, NJ: MPIF, 1993).

    Google Scholar 

  5. W.E. Quist and G.H. Narayanan, Treatise on Materials Science and Technology, ed. A.K. Vasuderan and R.D. Doherty (New York: Academic Press, 1989), p. 219.

    Google Scholar 

  6. C. Suryanarayana, F.H. Froes, and R.G. Rowe, Internal. Mater. Rev., 36(3) (1991), p. 85.

    CAS  Google Scholar 

  7. S. Krishnamurthy and F.H. Froes, Internat. Mater. Rev., 34 (1989), p. 297.

    Google Scholar 

  8. R. Sundaresan and F.H. Froes, J. Metals, 39(8) (1987), p. 22.

    CAS  Google Scholar 

  9. R. Sundaresan and F.H. Froes, Metal. Powder. Rep., 44 (1989), p. 195.

    Google Scholar 

  10. F.H. Froes and C. Suryanarayana, Powder Processing of Titanium Alloys, ed. A. Bose et al. (Princeton, NJ: MPIF, 1993).

    Google Scholar 

  11. F.H. Froes and J. Hebeisen, “Hot Isostatic Pressing of Titanium Based Materials,” Hot Isostatic Pressing, 93, ed. L. Delaey et al. (Antwerp, Belgium: 1993).

    Google Scholar 

  12. G.H. Narayanan et al., Processing of Structural Metals by Rapid Solidification, ed. F.H. Froes and S.J. Savage (Materials Park, OH: ASM, 1987).

    Google Scholar 

  13. C. Suryanarayana, R. Sundaresan, and F.H. Froes, Structural Applications of Mechanical Alloying, ed. F.H. Froes and J.J. deBarbadillo (Materials Park, OH: ASM Int., 1990), p. 193.

    Google Scholar 

  14. P.S. Goodwin and C.M. Ward-Close, “Process Control in the Mechanical Alloying of Ti-Al-Nb Alloys,” 2nd Int. Conf. on Structural Applications of Mechanical Alloying (Materials Park, OH: ASM Int., 1993), pp. 139–148.

    Google Scholar 

  15. F.H. Froes, D. Eylon, and C. Suryanarayana, JOM, 42(3) (1990), p. 26.

    Article  CAS  Google Scholar 

  16. R.L. Bickerdike et al., Rapidly Solidified Materials, ed. P.W. Lee and R.S. Carbonara (Materials Park, OH: ASM, 1987), p. 145.

    Google Scholar 

  17. R.W. Gardiner and B.V. Viney, “Electron Beam Evaporation as a Route to Advanced Light Alloys,” Proceedings of Conference: Electron Beam Melting and Refining State of the Art 1992, ed. R. Bakish (Englewood, NJ: Bakish Materials Corporation, 1992), pp. 116–125.

    Google Scholar 

  18. D.J. Bray et al., “Vapour Deposited Mg-Mn and Mg-Cr Alloys,” Magnesium Alloys and Their Applications, ed. B.L. Mordike and F. Hehmann (Garmisch-Patenkirchen, Germany: DGM Informationsgesellschaft, 1992), pp. 159–166.

    Google Scholar 

  19. C.M. Ward-Close and P.G. Partridge, “The Production of Titanium-Magnesium Alloys by Vapour Quenching,” Materials Letters, 11 (1991), pp. 295–300.

    CAS  Google Scholar 

  20. C.M. Ward-Close et al., “An X-Rray Diffraction Study of Vapour Quenched Titanium Magnesium Alloys” (Paper presented at the Seventh World Conference on Titanium, San Diego, CA, June 28-July 2,1992).

    Google Scholar 

  21. C.M. Ward-Close, P.G. Partridge, and C.J. Gilmore, “Precipitation and Hardening in Titanium-Magnesium and Titanium-Calcium Alloys” (Paper presented at the Seventh World Conference on Titanium, San Diego, CA, 28 June-2 July 1992).

    Google Scholar 

  22. G. Lu et al., “Microstructures of Ti Based Alloy Produced by Vapour Quenching, Electron Microscopy, Vol. 2, EUREM ’92 (Grenada, Spain: 1992), pp. 291–292.

    Google Scholar 

  23. A.R. Begg, “Metal-Matrix Composites by Powder Metallurgy,” Powder Metallurgy, 36(2) (1993), pp. 107–110.

    Google Scholar 

  24. F.H. Froes et al., SAMPE Qtly, 22(4) (1991), p. 11.

    CAS  Google Scholar 

  25. L. Christodoulou and J.M Brupbaker, SAMPE (1988), p. 29.

    Google Scholar 

  26. W.R. Mohn and D. Vukobratovich, SAMPE (1988), p. 26.

  27. R.L. Trumper, “Metal-Matrix Composites-Applications and Prospects,” Metals and Materials, (1987), pp. 662–667.

    Google Scholar 

  28. C.M. Ward-Close and P.G. Partridge, “A Fibre Coating Process for Advanced Metal Matrix Composites,” J. Mat. Sci., 25 (1990), p. 4315.

    CAS  Google Scholar 

  29. P.G. Partridge and C.M. Ward-Close, “Processing of Advanced Continuous Fibre Composites: Current Practice and Potential Developments,” Int. Mat. Rev., 38(1) (1993), pp. 1–24.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward-Close, C.M., Froes, F.H. Developments in the synthesis of lightweight metals. JOM 46, 28–31 (1994). https://doi.org/10.1007/BF03222532

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222532

Keywords

Navigation