Skip to main content
Log in

The history of progress in dimensionally stable anodes

  • Anodes and Anode Reaction
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article provides a brief history of dimensionally stable anodes by reviewing innovations in the chlor-alkali industry, electroplating and electrogalvanizing, and electrowinning. These anodes are attractive for numerous reasons (e.g.,.long life and reduced energy consumption), but they must still overcome the hurdle of cost togain wider acceptance for applications in the metallurgical process industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.T. Kuhn and P.M. Wright, “Electrodes for Industrial Processes,” Industrial Electrochemical Processes, ed. A.T. Kuhn (Amsterdam, the Netherlands: Elsevier, 1971), pp. 545–561.

    Google Scholar 

  2. R. Baboian, “Clad Metal Anodes,” Chlorine Bicentennial Symposium (San Francisco, CA: May 1974), pp. 158–173.

    Google Scholar 

  3. H.B. Beer, Belgian patent 710,751 (1968); British patent 1,147,442 (1969); U.S. patent 3,632,498 (1972); U.S. patent 3,711,385 (1973).

  4. H.B. Beer, “The Invention and Industrial Development of Metal Anodes,” J. Electrochem. Soc., 127 (1980), pp. 303C–307C.

    CAS  Google Scholar 

  5. H.S. Holden and J.M. Kolb, “Metal Anodes,” Encyclopedia of Chemical Technology, vol. 15 (New York: John Wiley & Sons, 1981), pp. 172–183.

    Google Scholar 

  6. K.J. O’Leary and T.J. Navin, “Morphology of Dimensionally Stable Anodes,” Chlorine Bicentennial Symposium (San Francisco, CA: May 1974), p. 174.

    Google Scholar 

  7. S. Trasati and W.E. O’Grady, “Properties and Applications of Ruthenium Oxide Based Electrodes,” Advances in Electrochemistry and Electrochemical Engineering, ed. H. Gerisher and C.W. Tobias, vol. 12 (New York: John Wiley & Sons, 1981), pp. 177–261.

    Google Scholar 

  8. S. Trasatti, ed., Electrodes of Conductive Metal Oxides, Parts A and B (Amsterdam, the Netherlands: Elsevier, 1980 and 1981).

    Google Scholar 

  9. C.E. Vallet et al. “DSA RuO2/TiO2 Electrode Modeled by Ion Implantation: An In-Situ Characterization by Photo-acoustic and Photocurrent Spectroscopy,” J. Electrochem. Soc., 135 (1988), pp. 387–395.

    CAS  Google Scholar 

  10. B.V. Tilak, K. Taxi, and C.L. Hoover, “Metal Anodes and Hydrogen Cathodes: Their Activity Towards Oxygen Evolution and Chlorate Reduction Reactions,” J. Electrochem. Soc., 135 (1988), pp. 1386–1392.

    CAS  Google Scholar 

  11. M. Yoshida and Y. Noaki, “Recent Developments in Anodes and Cathodes for Chlor-Alkali Electrolysis,” Performance of Electrodes for Industrial Processes, ed. F. Hine et al. (Princeton, NJ: the Electrochemical Society, 1989).

    Google Scholar 

  12. T. Shimamune et al. “Anode Characteristics in Chlor-Alkali Membrane Electrolysis,” in Ref. 11.

    Google Scholar 

  13. T. Shimamune et al., “Behavior of DSA Coating in Chlor-Alkali Membrane Electrolyser,” in Ref. 11.

    Google Scholar 

  14. T. Muranaga, Y. Kanaya, and N. Yokata, “Characteristics of Platinum Group Metal Anodes for Chlor-Alkali Cells,” in Ref. 11.

    Google Scholar 

  15. K. Hitrakata et al., “Development of Anodes for On-Site Hypochlorite Generation,” in Ref. 11.

    Google Scholar 

  16. N. Munichandraiah and S. Sathyanarayana, “Insoluble Anode of α-Lead Dioxide Coated on Titanium for Electrosynthesis of Sodium Perchlorate,” J. Appl. Electrochem., 18 (1988), pp. 314–316.

    CAS  Google Scholar 

  17. L.D. Burke and M.M. McCarthy, “Modification of the Electronic Transfer Properties of CO3O4 as Required for its Use in DSA-Type Anodes,” J. Electrochem. Soc., 135 (1988), pp. 1175–1179.

    CAS  Google Scholar 

  18. R.M. Skomoroski et al., “Performance of Platinum-Clad Anodes in Electroplating,” Plating (November 1973).

    Google Scholar 

  19. S. Kotowski and B. Busse, “Titanium Anodes for Steel Strip Electrogalvanizing,” in Ref. 11.

    Google Scholar 

  20. W.N. Brooks, D.A. Denton, and N.M. Sammes, “ICI Electrodes Coatings—From Mercury Cells to Automobile Bodies,” in Ref. Ref. 11, pp. 39–55.

    Google Scholar 

  21. J.M. McIntyre, “Anode Corrosion During Cathodic Electrodeposition of Organic Coatings,” in Ref. 11.

    Google Scholar 

  22. F. Hine, K. Takayasu, and N. Koyanagi, “A Platinized Titanium Anode for Chromium Electroplating,” J. Electrochem, Soc., 133 (1986), pp. 346–350.

    CAS  Google Scholar 

  23. K.L. Hardee, L.K. Mitchell, and E.J. Rudd, “Catalytic Anodes for High-Speed Electroplating and Electrogalvanizing,” Plating and Surface Finishing, 76 (4) (1989), pp. 68–71.

    CAS  Google Scholar 

  24. M. Fujimori et al., “Electrowinning from Aqueous Chlorides in SMM’s Nickel and Cobalt Refining Process,” Chloride Electrometallurgy, ed. P.D. Parker (Warrendale, PA: TMS, 1982), pp. 155–166.

    Google Scholar 

  25. E.O. Stensholt, H. Zachariasen, and J.H. Lund, “Falconbridge Chlorine Leach Process,” Trans. Instn. Mng. Metall. (C), 95 (1986), pp. C10–C16.

    CAS  Google Scholar 

  26. G. Lodi et al., “Ruthenium Dioxide-Based Film Electrodes—Effect of Chemical Composition and Surface Morphology on Oxygen Evolution in Acid Solutions,” J. Appl. Electrochem., 8 (1978), pp. 135–143.

    CAS  Google Scholar 

  27. R. Baboian, “Clad Metal Anode for Electrowinning” (Paper presented at the 78th National Meeting of the AIChE, Salt Lake City, UT, 1974).

    Google Scholar 

  28. D. Wensley and I.H. Warren, “Progressive Degradation of Noble Metal Coated Titanium Anodes in Sulfuric Acid and Acidic Copper Sulfate Electrolytes,” Hydrometallurgy, 1 (1976), pp. 259–276.

    CAS  Google Scholar 

  29. D. Wensley and I.H. Warren, “Corrosion and Passivation Behavior of Noble Metal Coated Anodes in Copper Electrowinning Applications,” Metall. Trans. B., 10B (1979), pp. 503–511.

    CAS  Google Scholar 

  30. A.J. Scarpellino, Jr., and G.L. Fisher, “The Development of an Energy-Efficient Insoluble Anode for Nickel Electrowinning I. Single Layer Precious Metal Coatings,” J. Electrochem. Soc., 129 (1982), pp. 515–521.

    CAS  Google Scholar 

  31. A.J. Scarpellino, Jr., and G.L. Fisher, “The Development of an Energy-Efficient Insoluble Anode for Nickel Electrowinning II. Multilayer Precious Metal Coatings,” J. Electrochem. Soc., 129 (1982), pp. 522–528.

    CAS  Google Scholar 

  32. C.J. Ferron, “Investigation of the Behavior of Precious Metal Coated Anodes in Copper Electrowinning,” Ph.D. thesis, Columbia University (1988).

    Google Scholar 

  33. C.J. Ferron and P.F. Duby, “Iridium Oxide Coated Titanium Anode in Copper Electrowinning,” Performance of Electrodes for Industrial Electrochemical Processes, ed. F. Hine et al. (Princeton, NJ: the Electrochemical Society, 1989), pp. 259–277.

    Google Scholar 

  34. C.J. Ferron and P.F. Duby, “Stability of an Iridium Oxide Coated Titanium Anode in Copper Electrowinning,” EPD Congress 1992, ed. J.P. Hager (Warrendale, PA: TMS, 1992), pp. 137–153.

    Google Scholar 

  35. J. Rolewicz et al., “Characterization of DSA-Type Oxygen Evolving Electrodes,” Electrochem. Acta, 33 (1988), pp. 573–580.

    CAS  Google Scholar 

  36. Ch. Comminellis, “Characterization of DSA-Type Oxygen Evolving Anodes,” in Ref. 11.

    Google Scholar 

  37. H.B. Beer, “Progress in Anodes for Metal Winning,” Extended Abstracts 83-1 (Princeton, NJ: the Electrochemical Society, 1983), p. 874.

    Google Scholar 

  38. J.K. Walker and J.I. Bishara, “Electrocatalytic Anode for Copper Electrowinning,” Anodes for Electrowinning, D.J. Robinson and S.E. James (Warrendale, PA: TMS, 1984), pp. 79–86.

    Google Scholar 

  39. K.R. Koziol and E.F. Wenk, “The Advantages of Coated Titanium Electrodes for Electrowinning Processes of Different Metals,” in Ref. 38, pp. 87–100.

    Google Scholar 

  40. G. Bewer et al., “Sintered Titanium Anodes in Metals Electrowinning,” in Ref. 38, pp. 101–112.

    Google Scholar 

  41. G. Bewer, H. Debrodt, and H. Herbst, “Titanium for Electrochemical Processes,” J. Metals, 34 (1) (1982), pp. 37–41.

    CAS  Google Scholar 

  42. Y. Liu, L. Wu, and B. Yuan, “Energy Saving DSA for Nickel and Zinc Electrowinning—A Laboratory Study,” Nonferrous Met. (China), 37 (3) (August 1985), pp. 53–58 (in English).

    Google Scholar 

  43. I. Enchev, G. Georgiev, and Ts. Uzunov, “Electrochemical Study of a New Type of Anode for Electrolytic Extraction of Zinc,” Metallurgiya (Sofia), 41 (1) (1986), pp. 6–8 (in Bulgarian); Metals Abstracts (1986), p. 42–1126.

    CAS  Google Scholar 

  44. D.L. Piron, “Recent Improvements in Zinc Alkaline Hydrometallurgy,” Electrometallurgical Plant Practice, ed. P.L. Claessens and G.B. Harris (New York: Pergamon Press, 1990), pp. 129–140.

    Google Scholar 

  45. P. Ardelean at al., “High Intensity Zinc Electrowinning at the Laboratory and Small Technical Scale,” Electrometallurgical Plant Practice, ed. P.L. Claessens and G.B. Harris (New York: Pergamon Press, 1990), pp. 115–127.

    Google Scholar 

  46. V.A. Ettel, “Energy Requirements in Electrolytic Winning and Refining of Metals,” CIM Bulletin (July 1977), pp. 179–187.

    Google Scholar 

  47. B.V. Tilak and S. Venkatesh, “Anodes in Electrochemical Operations: State of the Art, Problems Areas, and Future D&D Needs,” Electrochemistry Research Needs for Mineral and Primary Materials Processing, ed. T.J. O’Keefe and J.W. Evans (Washington, D.C.: U.S. Bureau of Mines and National Science Foundation, 1983), pp. 195–207.

    Google Scholar 

  48. I.H. Warren, “The Oxygen Electrode in Metal Electrowinning,” Anodes for Electrowinning, in Ref. 38, pp. 69–78.

    Google Scholar 

  49. J.A. Wells and W.R. Snelgrove, “The Design and Engineering of Copper Electrowinning Tankhouses,” Electrometallurgical Plant Practice, ed. P.L. Claessens and G.B. Harris (New York: Pergamon Press, 1990), pp. 57–72.

    Google Scholar 

  50. J.G. Jenkins and M.A. Eamon, “Plant Practice and Innovations at Magma Copper Company’s San Manuel SX-EW Plant,” Electrometallurgical Plant Practice, ed. P.L. Claessens and G.B. Harris (New York: Pergamon Press, 1990), pp. 41–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duby, P. The history of progress in dimensionally stable anodes. JOM 45, 41–43 (1993). https://doi.org/10.1007/BF03222350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222350

Keywords

Navigation